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ABSTRACT 

Scale is a widely used notion in medical image analysis that evolved in the form 

of scale-space theory where the key idea is to represent and analyze an image at various 

resolutions. Recently, a notion of local morphometric scale referred to as “tensor scale” 

was introduced using an ellipsoidal model that yields a unified representation of structure 

size, orientation and anisotropy. In the previous work, tensor scale was described using a 

2-D algorithmic approach and a precise analytic definition was missing. Also, with 

previous framework, 3-D application is not practical due to computational complexity.  

The overall aim of the Ph.D. research is to establish an analytic definition of 

tensor scale in n-dimensional (n-D) images, to develop an efficient computational 

solution for 2- and 3-D images and to investigate its role in various medical imaging 

applications including image interpolation, filtering, and segmentation.  

Firstly, an analytic definition of tensor scale for n-D images consisting of objects 

formed by pseudo-Riemannian partitioning manifolds has been formulated. Tensor scale 

captures contextual structural information which is useful in local structure-adaptive 

anisotropic parameter control and local structure description for object/image matching. 

Therefore, it is helpful in a wide range of medical imaging algorithms and applications.  

Secondly, an efficient computational solution of tensor scale for 2- and 3-D 

images has been developed. The algorithm has combined Euclidean distance transform 

and several novel differential geometric approaches. The accuracy of the algorithm has 

been verified on both geometric phantoms and real images compared to the theoretical 

results generated using brute-force method. Also, a matrix representation has been 

derived facilitating several operations including tensor field smoothing to capture larger 

contextual knowledge. 

Thirdly, an inter-slice interpolation algorithm using 2-D tensor scale information 

of adjacent slices has been developed to determine the interpolation line at each image 
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location in a gray level image. Experimental results have established the superiority of 

the tensor scale based interpolation method as compared to existing interpolation 

algorithms. 

Fourthly, an anisotropic diffusion filtering algorithm based on tensor scale has 

been developed. The method made use of tensor scale to design the conductance function 

for diffusion process so that along structure diffusion is encouraged and boundary 

sharpness is preserved. The performance has been tested on phantoms and medical 

images at various noise levels and the results were quantitatively compared with 

conventional gradient and structure tensor based algorithms. The experimental results 

formed are quite encouraging. 

Also, a tensor scale based n-linear interpolation method has been developed 

where the weights of neighbors were locally tuned based on local structure size and 

orientation. The method has been applied on several phantom and real images and the 

performance has been evaluated in comparison with standard linear interpolation and 

windowed Sinc interpolation methods. Experimental results have shown that the method 

helps to generate more precise structure boundaries without causing ringing artifacts. 

Finally, a new anisotropic constrained region growing method locally controlled 

by tensor scale has been developed for vessel segmentation that encourages axial region 

growing while arresting cross-structure leaking. The method has been successfully 

applied on several non-contrast pulmonary CT images. The accuracy of the new method 

has been evaluated using manually selection and the results found are very promising. 
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    Title and Department 
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ABSTRACT 

Scale is a widely used notion in medical image analysis that evolved in the form 

of scale-space theory where the key idea is to represent and analyze an image at various 

resolutions. Recently, a notion of local morphometric scale referred to as “tensor scale” 

was introduced using an ellipsoidal model that yields a unified representation of structure 

size, orientation and anisotropy. In the previous work, tensor scale was described using a 

2-D algorithmic approach and a precise analytic definition was missing. Also, with 

previous framework, 3-D application is not practical due to computational complexity.  

The overall aim of the Ph.D. research is to establish an analytic definition of 

tensor scale in n-dimensional (n-D) images, to develop an efficient computational 

solution for 2- and 3-D images and to investigate its role in various medical imaging 

applications including image interpolation, filtering, and segmentation.  

Firstly, an analytic definition of tensor scale for n-D images consisting of objects 

formed by pseudo-Riemannian partitioning manifolds has been formulated. Tensor scale 

captures contextual structural information which is useful in local structure-adaptive 

anisotropic parameter control and local structure description for object/image matching. 

Therefore, it is helpful in a wide range of medical imaging algorithms and applications.  

Secondly, an efficient computational solution of tensor scale for 2- and 3-D 

images has been developed. The algorithm has combined Euclidean distance transform 

and several novel differential geometric approaches. The accuracy of the algorithm has 

been verified on both geometric phantoms and real images compared to the theoretical 

results generated using brute-force method. Also, a matrix representation has been 

derived facilitating several operations including tensor field smoothing to capture larger 

contextual knowledge. 

Thirdly, an inter-slice interpolation algorithm using 2-D tensor scale information 

of adjacent slices has been developed to determine the interpolation line at each image 
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location in a gray level image. Experimental results have established the superiority of 

the tensor scale based interpolation method as compared to existing interpolation 

algorithms. 

Fourthly, an anisotropic diffusion filtering algorithm based on tensor scale has 

been developed. The method made use of tensor scale to design the conductance function 

for diffusion process so that along structure diffusion is encouraged and boundary 

sharpness is preserved. The performance has been tested on phantoms and medical 

images at various noise levels and the results were quantitatively compared with 

conventional gradient and structure tensor based algorithms. The experimental results 

formed are quite encouraging. 

Also, a tensor scale based n-linear interpolation method has been developed 

where the weights of neighbors were locally tuned based on local structure size and 

orientation. The method has been applied on several phantom and real images and the 

performance has been evaluated in comparison with standard linear interpolation and 

windowed Sinc interpolation methods. Experimental results have shown that the method 

helps to generate more precise structure boundaries without causing ringing artifacts. 

Finally, a new anisotropic constrained region growing method locally controlled 

by tensor scale has been developed for vessel segmentation that encourages axial region 

growing while arresting cross-structure leaking. The method has been successfully 

applied on several non-contrast pulmonary CT images. The accuracy of the new method 

has been evaluated using manually selection and the results found are very promising. 
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction and Project Definition 

Scale is a widely used notion in medical image analysis that evolved in the form 

of scale-space theory [1] where the key idea is to represent and analyze an image at 

various resolutions. Although, the basic notion of scale-space theory is widely applicable 

in imaging applications [2, 3], it suffers from the lack of a scale localization that led to 

the evolution of the “local scale” [4-7]. Later, Saha et al. [8, 9] introduced local 

morphometric scale and recently, we have generalized it to “tensor scale” – a local 

morphometric scale using an ellipsoidal model that yields a unified representation of 

local structure size, orientation, and anisotropy. In previous works from our laboratory, 

tensor scale [10] was described using an algorithmic approach and a precise analytic 

definition was missing. Also, its computational solution in 3- or higher- dimensional 

images was unrealistic. The overall aim of this Ph.D. research is to establish an analytic 

definition of tensor scale in n-Dimensional (n-D) images, develop an efficient 

computational solution and investigate its role in various medical imaging 

applications including image interpolation, filtering and segmentation. The research 

brings contextual structural information captured by tensor scale in a wide range of 

medical imaging algorithms and applications, and achieves performance improvement. 

Two major classes of applications of tensor scale in image processing were studied – (1) 

local structure-adaptive anisotropic parameter control and (2) local structure descriptor in 

image object/image matching. The Ph.D. research project was accomplished by 

completing the following six specific aims: 

Aim 1: Establish an analytic approach to define tensor scale in n-D images with objects 

formed by pseudo-Riemannian partitioning manifolds. 
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Aim 2: Develop an efficient computational algorithm for 2- and 3-D images combining 

Euclidean distance transform and several novel differential geometric approaches. 

Perform experiments to evaluate the accuracy of the computational algorithm. 

Aim 3: Design and develop an inter-slice interpolation algorithm based on tensor scale. 

Perform experiments to evaluate the performance of the method in comparison 

with existing interpolation algorithms. 

Aim 4: Design and develop an anisotropic diffusion filtering algorithm based on tensor 

scale. Perform experiments to evaluate the performance of tensor scale guided 

anisotropic diffusion filtering method in comparison with conventional gradient 

and structure tensor based diffusion filtering algorithms. 

Aim 5: Design and develop a tensor scale based n-linear interpolation method. Perform 

experiments to evaluate the performance of tensor scale based interpolation 

method in comparison with standard linear interpolation and windowed Sinc 

interpolation methods. 

Aim 6: Design and develop a new anisotropic constrained region growing method locally 

controlled by tensor scale for vessel segmentation. Perform experiments to 

evaluate the accuracy of tensor scale guided region growing method for 

vasculature segmentation. 

The analytic definition and efficient computational algorithm for tensor scale has 

been developed and reported in [11]. We first introduce a new analytic approach to define 

tensor scale as a set of orthogonal vectors by modeling an image as a set of objects 

defined by partitioning manifolds. To compute tensor scale, a direct algorithmic 

realization of the analytic definition faces two fundamental challenges: (1) object 

partitions are not known in real images and (2) computational complexities in three- or 

higher-dimensions. These challenges are addressed by combining techniques involving 

edge detection, distance transform, and differential geometric approaches. In short, it is 

realistic to assume that edge points given by edge detection algorithm are dense samples 
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on the theoretical partitioning manifolds, and that the distance transform from these edge 

points is a close approximation of distance transform from partitioning manifolds. 

Therefore, tensor scale may be computed by using gradient analyses and computational 

geometric approaches to the distance transform map from edge points in an image. 

Efficiency and effectiveness of the tensor scale computation algorithm is examined in 

terms of computation time and Log-Euclidean distance [12] on phantom images with 

known ground truth. 

Our tensor scale based slice-interpolation algorithm presents a closed form 

solution to determine the interpolation line at each image location in a gray level image 

[13]. A fundamental challenge in slice-interpolation for medical images is to determine 

the structure correspondence between adjacent slices to restore voxel isotropy. The 

challenge is met by utilizing tensor scale information of adjacent slices. The basic idea is 

to derive normal vector at each image location from tensor scale that yields trans-

orientation of the local structure and points to the closest edge point, which are further 

used to compute the interpolation line using a closed form equation. The method has been 

applied to several medical image datasets from clinical applications and its accuracy and 

response to noise and other image-degrading factors have been examined and compared 

with those of current state-of-the-art interpolation methods. 

The tensor scale based anisotropic diffusion filtering has been developed to 

govern the diffusion process in a space-variant and orientation-dependent fashion to 

optimally fit with local image structures captured in the form of tensor scale. Anisotropic 

diffusion [14] was originally described to encourage diffusion within a region 

(characterized by low intensity gradients) while discouraging it across object boundaries 

(characterized by high intensity gradients). The tensor scale based method uses a new 

approach to solve the fundamental challenge that the control parameter determining the 

degree of filtering is isotropic and fixed over the whole image which limits the 

performance of the algorithm. The performance of tensor scale based image filtering is 
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compared with gradient and structure tensor based diffusion filtering algorithms on 

several phantom and real images based on noise and structure preservation measurements.  

A new tensor scale based n-linear interpolation method has been developed that 

helps to improve the performance of interpolation method. The fundamental challenge for 

basic n-linear interpolation that the weight is determined by voxel distance only, which 

leads to rough edges and mixing. Tensor scale based approach addresses this problem by 

bringing the notion of an anisotropic space where distance increases slower along the 

direction of the local structure while it increases faster in the cross-structure direction. 

The performance of tensor scale based n-linear image interpolation method is examined 

and compared with standard linear and windowed Sinc interpolation method using a 3-D 

phantom and a set of medical images selected from different applications.  

Our vascular segmentation algorithm is based on the region growing technique [8, 

15-20]. The algorithm constructs the segmentation result with initial seeds on pulmonary 

vasculature. A fundamental challenge in region growing techniques for segmenting 

vascular structures is that, the continuity of structures are often broken by noise and 

artifacts especially at finer scales. For human experts, on the other hand, the continuity 

can be reconstructed using local structure geometry. Our method solves this problem 

using the local structure orientation and geometry information captured by tensor scale. 

The basic idea behind our method is to facilitate region growing along a structure while 

restricting the growth across it. This method models an anisotropic fuzzy region growing 

process using tensor scale, and its performance is tested on a set of human non-contrast 

pulmonary CT image. 

The proposed Ph.D. research project involves research works related to the 

following major areas – (1) scale-space theory and multi-scale approaches, (2) curvature 

analysis, (3) image interpolation, (4) image filtering, and (5) fuzzy region growing and 

image segmentation. In the following section, a brief literature survey on each of the 
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above research topics is presented with emphasis on the contribution from the current 

research study. 

1.2 Literature Survey 

1.2.1 Scale-space Theory and Tensor Scale 

Scale [21-23] may be thought of as the spatial resolution, or, more generally, a 

range of resolutions needed to ensure a sufficient yet compact representation of target 

information [21]. Scale plays an important role in image processing applications. It is 

useful in determining the optimum trade-off between noise smoothing and 

perception/detection of structures, and is also helpful in breaking a computer vision and 

image processing task into a hierarchy of tasks where tasks at higher levels deal with 

larger structures. Witkin [22] and Koenderink [23] mathematically formulated the 

concept of scale in the form of scale-space theory. Discrete scale-space representations 

[24] have been used in several imaging applications including segmentation [25], 

clustering [26], classification [27], and structural analysis [28]. Although, scale-space 

image representations have provided significant insight, it is not obvious – (1) how to 

unify the information from images at different scales, and (2) how to identify the optimal 

scale at each individual image point. A knowledge of “local scale” [4-7] would allow us 

to spatially tune the neighborhood size in different processes leading to selection of small 

neighborhoods in regions containing fine detail or near an object boundary, versus large 

neighborhoods in deep interiors [8]. Also, local scale would be useful in developing an 

effective space-variant parameter controlling strategies [9].  

The notion of local morphometric scale was introduced using a spherical model in 

[8, 9] and was applied to different image processing algorithms, see [10] for a survey on 

local scale. Although the preliminary results have demonstrated effectiveness of this 

notion of local scale in different image processing applications, a major limitation of the 

spherical model is that it ignores orientation and anisotropy of local structures. Recently, 
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we [10] proposed a new local morphometric scale, called “tensor scale” using an 

ellipsoidal model which gives a unified local parametric representation of structure size, 

orientation, and anisotropy. The algorithmic definition is shown in Figure 1. At every 

point in an image, tensor scale is defined as the largest ellipse centered at the candidate 

point within the homogenous region around it. The algorithm first locates edge on sample 

lines, then repositions the edge points following the axial symmetry of an ellipse, and 

finally fits an ellipse to the repositioned edge points, which defines tensor scale. 

 

Figure 1 A schematic description of tensor scale computation. The method starts with 

edge locations (blue and yellow dots) on sample lines emanating from the 

candidate image point (red dot). Following the axial symmetry of an ellipse, 

the edge points on each pair of radially opposite sample lines are repositioned 

(yellow dots to green dots). Finally, tensor scale ellipse is computed from 

repositioned edge points (green and blue dots). 
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Tensor scale is a valuable feature associated with every image point and is 

potentially useful in several image processing and computer vision applications, 

especially the medical imaging applications where local structural and scale information 

may play important roles. A few works have been reported on representing local 

orientation using gradient structure tensor [29] and its applications have been 

demonstrated in image filtering [29] and adaptive image morphological analysis [30]. 

Although, structure tensor is a useful concept and efficiently provides orientation 

information near edges, it primarily captures information derived from local gradient 

field and may not directly relate to local structure geometry that yields shape and size or 

thickness information. For example, in a homogeneous region, structure tensor may not 

carry meaningful information related to local structure. We formulate tensor scale from a 

geometric perspective where, at each image point, the tensor scale captures information 

related to local structure geometry. 

Effectiveness of tensor scale in image segmentation [31], registration [32], 

filtering [10] and also in quantifying local morphometry in complex quasi random 

networks of trabecular bone [33, 34] have been studied. Andalo [35, 36] presented an 

efficient computational solution for tensor scale and demonstrated its usefulness in 

detecting salient points on a given contour. 

1.2.2 Curvature Analysis 

Curvature refers to multiple related concepts in different areas of geometry. 

Intuitively in the context of curve/surface embedded in a Euclidean space, curvature at a 

point is the amount by which the local object deviates from being straight/flat. From 

differential geometry [37], curvature provides fundamental information for local shape. 

The notion of curvature is one of the most powerful tools in representing object and 

interpreting structure in an image and of great importance in many computer vision and 

image processing applications.  
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Riggs [38] investigated the potential of curvature for human visual system in 

perception of structure, specifically, to divide contours to meaningful segments. Parent 

[39] showed that tangent and curvature information are sufficient in estimation of local 

models for a curve and recovery of its trace. Kehtarnavaz [40] presented a scheme for 3-

D contour segmentation using curvature and torsion. The application of curvature in 

segmentation is further studied by others: Trucco [41] studied range image segmentation 

system that partitions range data to homogeneous surface patches using mean and 

Gaussian curvatures; Zana [42] presented an algorithm based on mathematical 

morphology and curvature evaluation for detection of vessel-like patterns which are 

common in medical images; and Soldea [43] developed a method to globally segment 

volumetric images into regions that contain elliptic iso-surfaces v.s. regions with 

hyperbolic iso-surfaces relying on globally compute, bound and analyze the Gaussian and 

mean curvatures. Curvature is also useful in signal filtering. Hodson [44] proposed an 

adaptive filtering technique for smoothing noisy sampled data to reduce the distortion of 

the information content with Gaussian kernels, and local curvature was estimated for 

determining Gaussian width. In [45], El-Fallah developed an inhomogeneous diffusion 

algorithm by representing the image as a surface and evolving it according to its mean 

curvature. For specific task of vessel enhancement, Chapman [46] evaluated the use of 

voxel intensity curvature measurements to enhance vessels in 3-D MRA images. As an 

important feature extracted from the image, curvature can be applied in object 

recognition and image registration. Goldgof [47] used curvature profile for extraction 

special points on terrain which were further utilized for recognition of particular regions 

of the terrain. Mokhtarian [48] developed an isolated object recognition system which is 

robust with respect to scale, position and orientation changes with curvature scale space 

representation. Shi [49] studied the use of curvature of the gray scale character image to 

improve the accuracy of handwritten numeral recognition. Friets [50] provided an 

alternative to the use of fiducials for the registration of a patient’s head position during 
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surgery with diagnostic images from computed tomography (CT) or magnetic resonance 

imaging (MRI). In [51], Fischer developed a fully automated, non-rigid image 

registration algorithm based on minimizing a measure subject to a curvature based 

constraint.  

Multiple methods exist in estimating curvature by employing several different 

representations. Most intuitive way is to fit an analytic surface to the neighborhood of the 

candidate point and evaluate its second derivative to get curvature estimation. The fitting 

algorithm varies from least squares error with orthogonal polynomials [52], linear 

regression [53] and spline-based approximation [54]. Discrete methods exist measuring 

the change in the normal within neighborhood and Flynn [55] gave an overview and 

evaluation of these approaches. Contemporary research focuses mainly on polygonal 

meshes. Symmetric matrix was defined integrating the normal curvature around each 

vertex in [56], in this work, the neighborhood points were used to approximate the 

curvatures. Further, for input data with high noise, techniques computing the sign and 

direction of principal curvatures are employed [57]. In our work, we utilize the curvature 

analysis theory in determining the directions of principal curvatures on a surface that 

relate to the max/min change of the normal vectors. Meanwhile, we investigate the 

information of the curvature value that contributes to local structure size. 

1.2.3 Image Interpolation 

Image interpolation has many applications in computer vision, medical imaging 

and image processing tasks. For medical imaging tasks, it is often necessary for image 

generation and further processing. Image reconstruction for CT or MRI uses interpolation 

techniques in discrete back projection for inverse Radon transform. After acquisition, 

zooming or rotating is often performed for diagnosis. Further, interpolation is needed in 

resampling which is desired for multiple image manipulations including registration and 

compression. Simple algorithms such as nearest neighbour and linear interpolation are 
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widely used from early ages till now for their simplicity. The Sinc function is considered 

ideal based on information theory introduced by Shannon, whereas Taylor or Lagrange 

polynomial approximations are usually applied in real applications due to infinite impulse 

response (IIR) nature of Sinc function. Later, different spline functions are used for their 

computational efficiency. Unser [58] described efficient algorithms for continuous 

representation of a discrete signal in B-splines. Lehmann [59] provided a comparison 

among the methods of truncated and windowed Sinc, nearest neighbor, linear, quadratic, 

cubic B-spline, cubic, Lagrange and Gaussian interpolation techniques.   

Medical images are commonly collected and thus represented as stacks of slices. 

Often, slice thickness is larger than in-plane resolution leading to anisotropic voxels. 

Moreover, spacing between slices may even not be the same among all slice. However, 

isotropic data commonly facilitates most image visualization, manipulation and analysis 

tasks and re-discretization is needed in circumstances such as multi-modality registration 

where for the same object of study, data sets are often different in their resolution. 

Therefore, inter-slice image interpolation has become a popular and indispensable 

processing step to restore voxel isotropy and to generate image with the desired 

resolution for medical images. 

Medical image interpolation techniques may be classified into two groups [60]: (1) 

image-based and (2) object-based methods. Image-based interpolation approaches 

including nearest neighbor, linear and spline interpolation methods are primarily based on 

local image intensities in adjacent slices and require no structural correspondence 

between two slices. Herman [61] reported on experimental study comparing linear and 

cubic spline interpolation methods in mathematical properties as well as performance in 

reconstruction and efficiency. Stytz [62] discussed the use of kriging for interpolation in 

3-D medical image surface rendering and slice interpolation. Although image-based 

techniques are computationally faster, such methods often suffer from several artifacts 

caused by nonlinear structural deformities in the slice direction. On the other hand, 
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object-based interpolation techniques determine point-wise structural deformation in 

successive slices to capture structural alterations in the slice direction. The primary 

difference among algorithms within this group is essentially in the method of building 

structural correspondence between successive slices. Many methods were proposed in 

this category. As one example, shape-based interpolation scheme for multidimensional 

image was discussed by Raya [63] in the motivation of saving user time in segmentation 

process in which an image is first segmented then interpolated. Similar procedure was 

studied by others. Herman [64] provided a generalization of the chamfer distance 

calculation and evaluated the performance of several variants of the method. Higgins [65] 

studied application of shape-based interpolation method in tree-like structures such as the 

coronary arteries in which case the low slice resolution problem is particularly acute. The 

method was later generalized from binary objects to grey-level scenes by Grevera in [66] 

where scene was treated as an object in a higher-dimensional space. Lee [67, 68] 

proposed a morphology-based algorithm to interpolate and improved the shape based 

method by integrating feature line-segments to guide the process for better shape 

interpolation. Penney [69] presented a method establishing spatial correspondence 

between adjacent slices using non-rigid registration algorithm. In our work, we utilize the 

structure information in tensor scale to build correspondence and the performance is 

evaluated in comparison of state-of-the-art methods. 

1.2.4 Image Filtering 

The theory of anisotropic diffusion was originally proposed by Perona and Malik 

[14]. It was described to encourage diffusion within a region (characterized by low 

intensity gradients) while discouraging it across object boundaries (characterized by high 

intensity gradients). The aim is to reduce noise while preserving edges, lines and detailed 

parts of the image that are important for image interpretation. Subsequently, the theory 

was studied by others. Gerig [70] applied anisotropic diffusion in MRI data postprocess, 
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supporting 3-D and multi-echo MRI and demonstrated efficient noise reduction and 

sharpening of object boundaries. Luo [71] presented an approach that derived the 

threshold for the conductance function from local geometry of image and applied it to 

simulated single photon emission computed tomography (SPECT) images. Sapiro [72] 

built a general framework for anisotropic diffusion of multivalued images and applied it 

to color images. Parker [73] investigated the use of entropy in determining local pixel 

intensity regularity that further measures image structure. Weickert introduced a non-

linear diffusion filter based on structure tensor in [74] to enhance flow-like structure, he 

also gave an overview for variations of anisotropic diffusion methods and application in 

image processing in [29]. Frangakis [75] assessed the signal reconstruction performance 

of the anisotropic filtering and wavelet filtering on multi-dimensional biomedical data. 

Saha [9] introduced a scale based filtering method using local structure size to arrest 

smoothing around fine structures. 

Anisotropic diffusion filtering has been applied in multiple applications and 

modalities. Ford [76] applied anisotropic diffusion as a directional smoothing technique 

that preserves structure in resampling. Orkisz [77] recovered small low-intensity vessels 

in magnetic resonance angiography images with a nonlinear spatial filtering technique 

based on anisotropic diffusion. You [78] developed an anisotropic regularization 

technique for blind restoration of blurred images. The technique adapted both degree and 

direction of regularization to structures in the image and consequently produced good 

restoration quality. Atzori [79] proposed an adaptive anisotropic filter aiming to unify 

different sources of perceptive distortion in MPEG sequences and to enhance visual 

quality. Demirkaya [80] made use of anisotropic diffusion filtering in smoothing the PET 

attenuation data to reduce random noise and streak artifacts. Miao [81] integrated 

adaptive anisotropic diffusion in Monte Carlo method for radiotherapy dose calculation. 

The dose distribution was smoothed according to local statistical noise levels. Yu [82] 

investigated a diffusion method for ultrasonic and radar imaging applications where 
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speckle noise rather than additive noise presented. In [83], anisotropic diffusion was used 

to smooth ultrasound images and extract an initial pre-segmentation of breast tumors for 

the active contour technique. Krissian [84] provided a new filtering method to remove 

Rician noise from MRI images. The standard deviation of the noise was robustly 

estimated by the filter. Local linear minimum mean square error filters and partial 

differential equations for MRI were combined. Xu [85] presented an efficient smoothing 

algorithm for reducing noise in diffusion tensor images and improved the accuracy of 

structural and architectural characterization of living tissue. Rodrigues [86] applied 

anisotropic filtering to suppress Poisson noise in fluorescence confocal microscopy 

images by considering different spatial and temporal correlations. 

In our work, we use geometric information of local structures from tensor scale to 

control the conductance parameter in filtering that facilitates along-structure smoothing 

while preserving boundary sharpness.  

1.2.5 Fuzzy Region Growing and Image Segmentation 

Segmentation has remained a salient task in most imaging applications, in 

particular, those involving object classification, geometry, shape, and motion analysis. 

Despite major advances in imaging science, image quality as well as resolution is often 

limited, particularly in medical imaging, posing further challenges to image segmentation. 

Several segmentation approaches, including manual outlining [87], boundary based [88, 

89], region-based [90], and shape and model-based [91, 92] techniques have been 

introduced and subsequently modified and investigated in different applications. 

Rosenfeld introduced the notion of fuzzy geometry and topology in the context of 

image processing and pattern recognition [18, 19]. He defined several geometric and 

topologic concepts in a fuzzy digital image including adjacency, separation, and 

connectedness. More recently, Buckley [93] have formulated some fundamental 

definitions related to fuzzy lines and planar geometry using the notion of a fuzzy point 
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and have studied their properties. In our current research, we primarily use fuzzy 

geometric and topology features related to distance and connectedness. The notion of the 

degree of connectedness between two image pixels/voxels was first introduced by 

Rosenfeld in the context of studying the topology and geometry of fuzzy images. 

Rosenfeld’s degree of connectedness was further studied to understand the topological, 

geometrical, and morphological properties of fuzzy subsets [19]. Dellepiane [94, 95] and 

Udupa [20] were the first to suggest the use of fuzzy connectedness in image 

segmentation. Udupa introduced a different framework for fuzzy connectedness bringing 

in a key concept of a local fuzzy relation called affinity on image voxels to capture their 

local hanging-togetherness. They showed how affinity can incorporate various image 

features in defining fuzzy connectedness, presented a general framework for the theory of 

fuzzy connectedness, and demonstrated how dynamic programming can be utilized to 

bring the otherwise seemingly intractable notion of fuzzy connectedness into 

segmentation. Saha [8, 96-98] further advanced the theory of fuzzy connectedness 

considerably, bringing in notions of scale [8] and iterative relative fuzzy connectedness 

[96, 97] which was further extended by Herman [99]. Saha [98] axiomatically proved that 

the basic min-max construct used in fuzzy connectedness is the only possible formulation 

and studied the issue of how to construct effective affinities and the use of local scale for 

this purpose. Aspects related to the computational efficiency of fuzzy connectedness 

algorithms have also been studied [100, 101]. The fuzzy connectedness methods have 

been utilized for image segmentation extensively in several applications, including 

multiple sclerosis lesion quantification [102-107], late life depression [108, 109], MR 

angiography [110, 111], CT angiography [112, 113], breast density quantification via 

mammograms [114]. 

Our presented methods are essentially designed and built using various notions of 

fuzzy geometry and topology. It is based on the region growing technique [8, 15-20] 

initiated with a set of seeds. A fundamental challenge faced in a region growing 
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technique for tracing vascular structures, especially at finer scales, is that the continuity 

of structures are often broken by noise and other imaging artifacts at in vivo imaging 

regime. However, a human expert may reconstruct the continuity using local structure 

geometry of vascular tree. Our method solves this fundamental problem using tensor 

scale that captures local structure orientation and geometry. A new anisotropic 

constrained region growing algorithm is formulated that combines tensor scale with fuzzy 

connectedness which facilitats region growth along local structure while arresting cross-

structure leakages. 

1.3 Organization of the Thesis 

The thesis is organized as follows. 

 Chapter 1: In this chapter, an overview of the specific aims and the proposed 

methods is presented. Also, the significance and innovation of the research is 

discussed and a literature survey of related work is conducted. 

 Chapter 2: In this chapter, the theory of tensor scale is described and the analytic 

definition is presented which is the basis of the research project. Also, the theory 

and algorithm to efficiently compute tensor scale are described, and the 

experimental plans, methods, and results evaluating the accuracy and efficiency of 

the computational framework are presented. Specifically, this chapter describes 

the research methods, results, and observations related to Aims 1 and 2. 

 Chapter 3: In this chapter, the description of the theory and algorithms related to 

tensor scale based inter-slice interpolation algorithm is provided, as well as the 

experimental plans, methods, and results evaluating the accuracy of the new 

interpolation method. Specifically, this chapter describes the research methods, 

results, and observations related to Aim 3. 

 Chapter 4: In this chapter, I present an anisotropic diffusion filtering algorithm 

based on tensor scale, and describe the experimental plans and results evaluating 
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the performance of tensor scale guided filtering method in comparison with 

conventional algorithms. Specifically, this chapter describes the research methods, 

results, and observations related to Aim 4. 

 Chapter 5: In this chapter, the algorithm incorporating tensor scale for n-linear 

interpolation is described. Experimental plans and results evaluating the accuracy 

of the algorithm are presented. Specifically, this chapter describes the research 

methods, results, and observations related to Aims 5. 

 Chapter 6: In this chapter, the theory and algorithms of a new fully automatic 

anisotropic constrained region growing method locally controlled by tensor scale 

for vessel segmentation are presented with experiments and results evaluating the 

accuracy of the new vasculature segmentation method. Specially, this chapter 

describes the research methods, results, and observations related to Aims 6. 

 Chapter 7: In this chapter, a general conclusion is drawn and potential future 

directions are discussed with preliminary results. 
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CHAPTER 2  

ANALYTIC DEFINITION TO TENSOR SCALE AND EFFICIENT 

COMPUTATIONAL ALGORITHM 

2.1 Introduction 

In this chapter, a new analytic approach to define a local morphometric scale 

using tensor model and an effective computational solution in 2- and 3-D is introduced. 

Then I will describe experimental plans to examine the accuracy performance of the 

computation method. Specifically, we examine the robustness of 2-D tensor scale 

computation under noise and blur quantitatively in comparison with that of our previous 

method using brain phantoms. Then we evaluate the accuracy of our tensor scale 

computation method based on differential geometry quantitatively on 3-D phantoms and 

compare its performance with that of direct implementation of spatial sampling method. 

In the following, I will first present basic definitions and notions of tensor scale 

followed by detailed descriptions for computation algorithms used in the research project. 

For experimental methods and results, I describe the plan and methods related to 

experiments evaluating the accuracy and efficiency of the method. Finally, the 

experimental results are given and conclusion is drawn. 

2.2 Analytic Definition of Tensor Scale 

Let   denote the set of real numbers, for analytic definition, we consider an image   

in continuous space   . Image   is considered as the union of multiple objects which are 

defined as partitions by   (   )-D pseudo-Riemannian manifolds, say,           ; 

we refer to these manifolds as partitioning manifold. Now, let us first consider a point 

     and the subspace    formed by a set of   orthogonal vectors   ( )   ( )     ( ) 

with   being the origin. An image with partitioning manifolds   
       

         
  

   is formed over the orthogonal complement   
  of   . Let us refer to this image as 

orthogonal complement image of the vectors   ( )   ( )     ( ) at  . Finally, tensor scale 
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at a point      is an ordered sequence of orthogonal vectors 〈  ( )   ( )     ( )〉 

inductively defined as follows:  

1.   ( ) is the vector from   to the closest point on the nearest partitioning manifold. 

2. Given the first   orthogonal vectors,   ( )   ( )     ( ), the (   )th vector     ( ) 

points from   to the closest point on the nearest partitioning manifold in the orthogonal 

complement image of   ( )   ( )     ( ) at  . 

 

Figure 2 An illustration of tensor scale using a rabbit femur bone surface (dark off-

white) forming a 2-D manifold   . The candidate spel   is shown as a red 

dot; the point on    closest to   gives the primary t-vector   ( ) (red). The 

orthogonal complement plane   
  and the 1-D manifold   

     are shown 

in blue and cyan, respectively. Secondary t-vector   ( ) is defined by the 

point on   
     closest to  ; finally,   ( ) is given by the closest point on 

  
     along the line orthogonal to   ( ). It may be noted that projections 

of the two lines (dotted yellow and green) on    along   ( )  provide 

principal directions of    at  , the meeting location with   ( ); this idea is 

used in our computational solution in 3-D. 
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In 2- and 3-D, we refer to   ( ) ,   ( )  and   ( )  (only, for 3-D) as primary, 

secondary and tertiary (only for 3-D) as primary, secondary and tertiary t-vectors of  ; in 

general, “t-vector” will refer to any of the three vectors. The notion of tensor scale defined 

as above is schematically illustrated in Figure 2 with a 3-D rabbit femur bone surface   . As 

illustrated in the Figure, tensor scale at a point   (red dot) in a 3-D image is an ordered 

sequence 〈  ( )   ( )   ( )〉  of three orthogonal t-vectors. The primary t-vector   ( ) 

(red) defines the direction and distance to the closest point on the femur surface. The 

orthogonal complement plane   
  and the 1-D partitioning manifold   

     on   
  are 

shown in the figure; note that the 1-D partitioning manifold (cyan) is essentially the 

intersection between the plane   
  (blue) and the partitioning surface    (the femur bone 

surface) in the 3-D image. The secondary vector   ( ) (yellow) is defined by the point on 

  
     that is closest to  . Once   ( ) and   ( ) are found, the line (dotted green) on 

which the tertiary vector   ( ) (green) lie is confirmed; the final direction and the length of 

  ( ) is defined by finding the closest point on the partitioning surface along the line. It may 

be noted that projections of the two dotted lines (yellow and green) on    along the primary 

vector   ( ) provides two principal directions on    where it meets   ( ); this observation 

is used in our computational solution for tensor scale in 3-D. 

Here, we will present a matrix representation  ( ) of tensor scale at   derived from 

the ordered sequence of orthogonal t-vectors 〈  ( )   ( )     ( )〉  facilitating use of 

conventional tensor algebra. Let   ( ) denote the unit vector along   ( ) and let   ( ) be the 

magnitude of   ( ). The matrix tensor scale is defined as follows: 

 ( )  [  ( )   ( )     ( )] [
  

 ( )   
   
    

 ( )
] [  ( )   ( )     ( )]   

It may be shown that   ( )     ( )       ( )  and therefore, although, the 

ordering of vectors 〈  ( )   ( )     ( )〉 is ignored in matrix representation, it may be 

recovered from the matrix representation by analyzing eigenvalues. 
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2.3 Computational Solution 

A direct approach to formulate a tensor scale computation algorithm from its 

definition faces two major hurdles – (1) object partitions are unknown in real images and 

(2) high computational complexity in three- or higher-dimensions. Here, we outline our 

algorithmic solution in 3-D images involving edge detection, distance transform, and 

differential geometric approaches which may be extended to higher dimensions. In an 

image, often, we don’t know the partitioning manifolds used to define tensor scale. 

However, we may realistically assume that detected edge points in an image lie on these 

hypothetical manifolds. Also, because of the fact that these edge points are dense samples 

on these manifolds, the distance transform from these edge points is a close 

approximation to distance transform from the hypothetical partitioning manifolds. With 

this understanding, tensor scale may be computed by using gradient analysis and 

computational geometric approaches to the distance transform map from edge points in 

an image. 

The basic idea behind our algorithm is to first locate edge points in an image and 

use those as sample points on partitioning manifolds. As mentioned earlier the distance 

transform from edge locations in an image is an approximation of that from unknown 

partitioning manifolds. Thus, the gradient of the distance transform map at any given 

point presents the direction to the nearest partitioning manifold, i.e., the direction of the 

primary t-vector. The magnitude of the primary t-vector is defined by the distance 

transform value at the candidate point. Once the primary t-vector is determined, in 2-D, 

the secondary t-vector may be computed by locating the closest manifold along the line 

perpendicular to primary t-vector. However, this computation is not that trivial in 3-D 

where the first step is to determine the principal direction on the local partitioning 

manifold (Figure 2). This job is accomplished using a new based on computational 

geometric analysis of distance transform from discrete sample points of a hypothetical 
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manifold. In the following we describe different steps in tensor scale computation starting 

with basic definitions and notations. 

In this work, all computational and algorithmic developments are confined to 2- 

and 3-D images, although, the methods may generalize to higher dimensions. Let   

denote the set of integers. Thus,    and    represent a 2-D plane and a 3-D space while 

   or    denote a digital space in 2- or 3-D, respectively. In our discussion,    will be 

used where    and    are referred commonly. An  -D digital image is defined with an 

image intensity function       . Each element of an  -D digital space is referred to 

as a spel (an abbreviation of “spatial element”) whose position is denoted by Cartesian 

coordinates (     )  or (        )  where           . For any two spels       , 

|   | denotes the Euclidean distance between the two spels. For any vector     , | | 

gives its magnitude.  

2.3.1 Edge Detection and Distance Transform Computation 

The purpose of edge detection is to compute sample points on unknown 

partitioning manifolds in a digital image representation. Here, we have adopted an edge 

detection approach combining both Laplacian of Gaussian (LoG) and Derivative of 

Gaussian (DoG) operators. Specifically, an edge is located at the zero crossing of LoG if 

absolute value of its DoG is above a predefined threshold. It may be noted that edge 

locations in an image form a set of points in   , therefore, a zero crossing of LoG often 

does not coincide with a spel having integral coordinates. This problem is solved by 

analyzing topological consistency of alterations of signs in LoG values at spels over 

    (in 2-D) or       neighborhood; an illustration of different geometric classes 

of possible alteration patterns over a       neighborhood is presented in Figure 3.  
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(a) 

(b) 

Figure 3 Illustration of different patterns of sign alteration of LoG values       

neighborhood. Spels in a       neighborhood are marked with    or   

(light gray) indicating that if the sign of LoG for spels marked with    is 

positive then that for spels marked with   is negative or vice versa. (a) All 

possible geometric classes of sign alterations with a valid zero crossing of 

LoG. (b) A few examples of sign alterations without a zero crossing of LoG. 

Alteration patterns in a geometric class are identical under mirror reflection 

and/or rotations by integral multiple of 90 degrees. Topological consistent cases of LoG 

sign alterations are shown in Figure 3(a) where the points with identical LoG sign are 6-

connected; a few examples of topologically non-consistent alteration patterns are shown 

in Figure 3(b). A zero crossing of LoG is identified for topologically consistent cases, 

only. To determine the edge location, first, a zero crossing is located for each pair of 

points with alternating LoG values in the       neighborhood. Finally, the edge is 

located at the mean of these zero crossings. The DoG value at the edge location is 

determined using n-linear interpolation of DoG values at grid locations in     or 

      neighborhood depending upon image dimensionality. As far our knowledge 

goes, the idea of using topological consistency in detecting zero-crossing is original and 

was not used before. Finally, two thresholds         and        of DoG values and a 
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technique similar to hysteresis, presented in Canny’s edge detection algorithm [115], are 

used to select both strong and weak edges while avoiding noisy zero-crossings. The two 

thresholds         and       .were determined using the hysteresis threshold detection 

algorithm for the Canny edge detector [115, 116]. Saha et al. [117] described an 

application-dependent training approach to determine different gradient parameters.  

Distance transform is defined as a function or an image        , where, 

  ( )|     gives its Euclidean distance at   from the closest partitioning manifold 

represented by edge points. Here, the basic idea is to use zero crossing locations in    

and then compute Euclidean distance transform from these locations. Let   denote the set 

of all zero crossings in an image; an edge location     falls inside a     (in 2-D) or 

      (in 3-D) neighborhood which will be referred to as the binding box of  . For 

each edge location    , a distance transform value is initialized at four (in 2-D) or eight 

(in 3-D) spels at the vertices of the binding box of   by directly computing their distances 

from  . After this initialization, the Euclidean distance transform values are propagated 

inside using a wave propagation algorithm similar to the approach adopted in [118, 119]. 

2.3.2 Tensor Scale Computation 

Tensor scale algorithm determines the primary t-vector from the gradient of 

distance transform image and subsequent tensor scale vectors are computed using 

differential geometric approaches. At a spel     , the direction the primary t-vector 

  ( ) is determined as the gradient direction of DT at   and the magnitude of the vector 

is defined as the DT value at  , i.e.,  

|  ( )|    ( )  

and the unit vector   ( ) along   ( ) is 

  ( )  
   ( )

|   ( )|
 

Here, we have used the Sobel gradient operator. 
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Once, the primary t-vector   ( ) is determined, computation of the secondary t-

vector   ( ) in 2-D is straightforward because the vector lies on the straight line    

perpendicular to   ( ). Thus,   ( ) may be computed by locating the closest partitioning 

manifold along the straight line   . However, a difficulty here is that the edge locations 

representing partitioning manifold are discrete points in    and therefore, a simple 

sampling approach along a straight line for locating a manifold may raise the danger of 

missing the target manifold.  

(a) 

(b) 

Figure 4 Illustration of the scheme for locating target manifold along specified 

direction. (a) Distance and primary vector information is investigated at 

sample points       
 on a line   . (b) Sample point is considered as 

sufficiently close to the target manifold if distance transform value is 

sufficiently small and the angular difference for primary vector with its 

successor is greater than a preset threshold. 
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This problem is overcome by modifying the search process as illustrated in Figure 

4 – let       
|        be the sample points on a line   ; the     is sufficiently close 

to the target manifold along    if it satisfies the following two conditions: 

1.   (      
)     ,  

2. The angular difference between the two primary t-vectors   (      
) and 

  (  (   )   
)  at the two successive sample points       

 and   

(   )   
 is close to      (in this paper, we have use “     ” to account for 

errors. It may be noted that, if the angular difference is less than    , the two 

points are on the same side of the partitioning manifold. Thus, the threshold of 

     was picked at the middle of the ideal situation of      and     when the 

two points fall on the same side of the partitioning manifold. 

The value of     is determined by the density of edges locations and it should 

also define the sample interval size    
; in this paper, we have used      . Finally, the 

target manifold is located on the line    at a distance of     
   (      

) from  .  

Computation of the secondary t-vector   ( )  is more challenging in 3-D as 

compared to 2-D. The primary reason behind the difficulty is that, the determination of 

  ( ) narrows down   ( ) onto a plane   perpendicular to   ( ). However,   ( ) may 

lie along any direction on the plane. Here, we choose the vector   ( )  along the 

maximum curvature direction at the closest point   on a partitioning manifold. A 

challenge is how to compute the maximum curvature direction at   because an analytic 

expression of the partitioning surface is unknown; instead, discrete sample points (edge 

locations) on the surface are available. The basic idea behind our algorithm of detecting 

the maximum curvature direction is to first, determine the primary t-vector    at every 

spel in the neighborhood of  . The primary t-vector    at a neighboring spel of   

intersects the partitioning surface at the vicinity of   (see Figure 5). More importantly, the 

angular inclination of    with the plane  , perpendicular to   ( ), changes most rapidly 

along the direction of maximum principal curvature and it changes slowly along the 
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minimum principal curvature direction. In other words, the projection of the unit vector 

along    on   takes larger values along the maximum curvature direction and it takes 

smaller values along the minimum curvature.  

 

Figure 5 Illustration of the computation of secondary t-vector   ( )  in 3-D. (a) A 

partitioning surface with primary vector   ( ) (black) and   ( ) (green) for 

several  s (green dots) in the neighborhood of   (black dot). (b) Projection 

vectors   
 ( ) of normalized vectors   ( ) |  ( )|⁄  on   along with the curve 

at the intersection of   and the partitioning surface. (c) Computation of 

principal directions using   
 ( ) (solid) and    

 ( ) (dotted). (d) Projection of 

principal directions onto partitioning surfaces. 

Although our method is primarily based on this theory, to reduce the effect of 

noise and discretization, we determine the principal curvature direction using principal 

component analysis (PCA) of these projection vectors on   as follows. Let             
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be   points in the neighborhood of   and let   
 ( ) (solid vectors on Figure 5(b, c)) be the 

projection of the unit vector   ( ) |  ( )|⁄  on  . To enforce axial symmetry of 

projection vectors, each projection vector   
 ( ) (solid line, Figure 5(c)) is accompanied 

with an opposite vector    
 ( ) (dotted line). PCA of the all points represented by these 

vectors is applied to compute the two principal directions; the eigenvector corresponding 

to larger eigenvalue gives the direction for maximum principal curvature while the other 

eigenvector provides the direction of the minimum curvature (see Figure 5(d)).  

The secondary t-vector   ( ) is chosen along the maximum curvature direction; 

the exact value of the t-vector is determined using the same algorithm adopted for 

detecting   ( ) in 2-D. Finally, once the primary and secondary t-vectors are known, the 

task of finding the tertiary t-vector in 3-D is equivalent to determining the secondary t-

vector in 2-D. 

2.3.3 Tensor Scale Smoothing 

A smoothing filter is often used to reduce noise in intensity images. However, 

smoothing of a tensor scale image may not be as trivial as smoothing a scalar image. First, 

a matrix representation  ( ) of tensor scale at   is obtained as described at the beginning 

of Section 2.2. enabling various tensor operations and statistical analysis. Weickert [29] 

used component-wise Gaussian convolution on local structure tensors to obtain a smooth 

representation. To both avoid producing negative eigenvalues in a component-wise 

averaging that contradicts the basic definition of tensor scale and generating more reliable 

smoothing result, we have adopted the Log-Euclidean distance (L-E) approach [12]. 

Effectiveness of the L-E approach in diffusion tensor image (DTI) interpolation has been 

demonstrated in [12].  

Let       |                                  , be a symmetric positive 

semi-definite matrix. The logarithm and the exponential of this matrix are defined as 

follows: 
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               [
       

   
       

]   

          [
     
   
     

]    

A smoothing function using the L-E approach is defined using a discrete Gaussian 

kernel          

  ( )  {  
 

| | 

                 

            
  

where          is the support of the kernel and   is the scalar normalizing factor ensuring 

that ∑   ( )          
  . Finally, the L-E based tensor smoothing algorithm is defined 

as: 

       ( )     (   ( )    )  

where, ‘ ’ is the convolution operator. 

2.3.4 Direct Implementation of the Analytic Definition 

The computation solution for tensor scale using differential geometric approaches 

as presented in Section 2.3.2 is efficient. However, especially in 3-D, it relies on some 

assumptions while relating principle curvatures of the local manifold to the direction of 

the secondary t-vector at a candidate point (see Figure 2). Therefore, a direct 

implementation of the analytic definition of tensor scale is needed to test the accuracy of 

the efficient computational algorithm. In the direct implementation, the primary t-vector 

  ( ) is determined from the partitioned image using a sample-line based approach [10] 

with a high angular density of sample lines (10K lines over the 3-D angular space). 

Subsequent t-vectors are computed directly following the definition of tensor scale. At a 

spel     , on the orthogonal plane   
 ( ) of   ( ), we will generate a 2-D image 

  
 ( ) as the intersection of original image and plane   

 ( ). For   
 ( ), following the 
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same sample-line based approach for 2-D image, we further obtain the secondary and 

tertiary t-vectors   ( ) and   ( ) for original image. 

2.4 Experimental Methods and Results 

As outlined in the second specific aim in Chapter 1, the overall objective of our 

experimental plan is to examine the robustness, accuracy, and efficiency of our tensor 

scale computation algorithm. Performance of the tensor scale computation algorithm has 

been examined both qualitatively and quantitatively. We present the results from the 

algorithm under analytic definition on both 2- and 3-D images. Specifically, the 

robustness of the algorithm is quantitatively evaluated using a set of phantom images at 

different noise and blur levels. Accuracy of the method is evaluated using phantom 

generated from simulated brain MR image and evaluation is performed in comparison 

with direct spatial sampling implementation. Finally, the efficiency of the method is 

compared with algorithm under algorithmic definition in terms of computation time.  

Performance of the tensor scale computation algorithm is qualitatively illustrated 

in Figure 6 using 2-D image slices from the BrainWeb MR phantom data and the 3-D 

pulmonary human CT image. The result of the 2-D tensor scale computation algorithm on 

a BrainWeb MR phantom image slice randomly selected from mid-brain region is 

illustrated in Figure 6 (a-d). Results of edge location and gray scale distance 

transformation are presented in Figure 6 (b). The color coding scheme by Saha [10] was 

adopted to display the 2-D tensor scale image at a pixel   that represents an ellipse  ( ). 

A color value is assigned for the tensor scale  ( ) such that the hue component of color 

indicates its orientation while the saturation and intensity components of the color denote 

the anisotropy and thickness, respectively. The color coding disk at maximum intensity is 

shown in Figure 6 (d). Results of 3-D tensor scale computation on the pulmonary CT 

image are presented in Figure 6 (e-j). 3-D tensor scale at a spel   essentially represent an 

ellipsoid  ( ).  
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Figure 6 Results of tensor scale computation. (a) A 2-D image slice from the BrainWeb 

MR brain phantom data. (b) Computed edge locations (red) and gray scale 

distance transform. (c) A color coded illustration of 2-D tensor scale. (d) 

Color coding disk at full intensity. (e-g) Same as (a-c) but for 3-D tensor scale 

computation. Results are shown on one image slice; see text for further 

explanation. (h-j) Same as (e-g) but from another view. 

Using three components of color-space, we may display an ellipse. Therefore, in 

3-D, the intersection between  ( ) and the display plane forming an ellipse is depicted 
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(Figure 6 (g,j)). In following sections, experimental methods to evaluate robustness, 

accuracy, and efficiency of our method is described. 

2.4.1 Robustness 

To evaluate the robustness of 2-D computation under different noise and blur, we 

follow the same experimental setup described in [10]. Based on ten phantom images 

generated by manual outlining of while matter and brain parenchymal regions, a set of 

250 realistic 2-D phantom images at five different levels of noise and five different levels 

of blurring were generated from manual segmentations of white matter regions in image 

slices. Let    |           denote a true phantom image and let    
   denote the phantom 

image obtained from     at the level of blurring   and noise  . Also, let    ( ) (or, 

   
  ( )) denote the tensor scale ellipse computed at an image point   in the image     

(respectively,    
  ). In order to evaluate the robustness of a tensor scale computation 

method under noise and blurring,    ( ) is considered as the truth because it is computed 

from     with no noise and blurring. A “similarity measure” of two concentric ellipses is 

crucial to compute the robustness of a tensor scale computation algorithm. Unlike scalar 

and vector quantities, similarity between two ellipses (tensor) is not trivially defined. 

Here, we have utilized the natural mapping that exists between the set of all ellipses and 

the RGB color space. Specifically, the disagreement between two ellipses is defined as 

the difference between their representative RGB vectors (the range of each component of 

RGB vector is [0, 1]). Let    (   ( )) and    (   
  ( )) denote the RGB vectors onto 

which the ellipses    ( )  and    
  ( ) , respectively, are mapped. Thus, 

( √ ⁄ )|   (   ( ))     (   
  ( ))|  captures the difference between true and 

computed tensor scales at   in terms of their distance in the color-space used here to 

represent tensor scales. Here, a division by √  is applied to normalize the error measure 

so that its value lies in the [   ] interval. The figure of merit      
   (a measure of 
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similarity) of a tensor scale computation method for a phantom image    
   is defined as 

follows: 

     
   

‖   ‖  ∑ ( √ ⁄ )|   (   ( ))     (   
  ( ))|     

‖   ‖
     

In the above equation, ‖   ‖ denotes the number of pixels in     and | | returns 

the absolute value of its parameter. For a given method, at a given level of noise and 

blurring, the mean and standard deviation of      
  |           values have been 

computed. Also, at a given level of noise and blurring, a paired t-test has been performed 

on the      
   values obtained by the previous method with improvements [13]and the 

method under analytic definition discussed in this paper.  

The robustness test of 2-D tenor scale computation is performed using the same 

brain phantoms as in [10] the result is shown in Table 1 and Table 2.  

Table 1 Performance of tensor scale computation algorithm based on analytic 
definition at various levels of noise and blurring. 

 B1 B2 B3 B4 B5 

N1 98.12±0.11 97.47±0.12 96.92±0.18 95.03±0.32 93.58±0.49 

N2 97.74±0.12 97.00±0.18 96.16±0.24 94.28±0.34 92.73±0.46 

N3 97.35±0.15 96.55±0.19 95.61±0.23 93.77±0.41 92.31±0.52 

N4 96.42±0.20 95.40±0.34 94.45±0.40 92.82±0.55 91.82±0.57 

N5 95.34±0.40 94.40±0.48 93.67±0.49 92.28±0.61 91.55±0.67 

Each row indicates a specific noise level that increases from top to bottom and each 
column indicates a specific blur level that increases from left to right. Results are 
reported as mean FOM ± standard deviation. 

Table 1 presents the mean (first entry) and standard deviation (second entry) of 

FOM (figure of merit) values for different phantom images. Here, each cell presents the 
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statistics of ten phantom images at a specific level of noise and blurring with noise 

increasing from top to bottom while blurring increases from left to right.  

Table 2 Comparison between the performance of the analytic and algorithmic tensor 
scale computation algorithms at various levels of noise and blurring.  

 B1 B2 B3 B4 B5 

N1 -0.53 (*) -0.45 (*) -0.12 (*) -0.43 (*) 1.22 (*) 

N2 -0.68 (*) -0.56 (*) -0.38 (*) -0.06 0.53 (*) 

N3 -0.59 (*) -0.25 (*) -0.06 0.95 (*) 1.02 (*) 

N4 0.14 0.36 (*) 0.76 (*) 1.06 (*) 1.90 (*) 

N5 0.91 (*) 1.15 (*) 1.31 (*) 1.84 (*) 1.77 (*) 

Each row indicates a specific noise level that increases from top to bottom and each 
column indicates a specific blur level that increases from left to right. Statistically 
significant differences are marked by (*) denoting that the two methods has different 
performance at the significance level of p-value      . Positive result means the 
analytic computation outperforms the algorithmic method and vice versa. The two 
methods were statistically equivalent in the three remaining cases. 

Table 2 presents the results of comparison between the analytic method and the 

improved algorithmic method reported in [13] for ten images at different levels of noise 

and blurring. It may be noted that the analytic method outperforms the algorithmic 

method at higher noise and blur level while the algorithmic method performs better for 

low level. Also, the p-values of paired t-tests for 3 cases with median noise and blur level 

indicate that the differences between the analytic and algorithmic methods are not 

statistically significant. 

Such result can be explained by the fact that the algorithmic method basically 

performs a smoothing over the process of feature extraction by ellipse fitting while the 

analytic method directly finds the nearest partitioning manifolds. Therefore, there is 

inherently more color variation in the result produced by analytic method (as shown in 
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Figure 7) and therefore when noise and blur levels are low, both methods produce fairly 

precise result with regard to the ground truth while there is higher chance that the small 

difference will get shown by statistics for analytic method. However, from the result, it is 

clear that the analytic method is more robust under higher noise and blur levels. 

(a) (b) (c) 

Figure 7 Results of 2-D phantom image computation. (a) An original phantom image 

(2) Tensor scale result produced by algorithmic method. (c) Tensor scale 

result produced by analytic method. 

2.4.2 Accuracy 

The purpose of our 3-D accuracy evaluation study is to examine the difference in 

tensor scale obtained using the efficient differential geometrical approach of tensor scale 

computation as compared with the true value directly computed from the definition using 

spatial sampling method. In order to perform this test, we generated phantom images at 

five different levels of noise (noise: 8% to 20%) and blurs (     : 0.5 to 2.5) from the 

BrainWeb simulated brain MR image and a 3-D pulmonary human computed 

tomography (CT) image.  
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(a) (b) (c) 

(d) (e) 

(f) (g) 

Figure 8 Tensor scale computation result comparison between differential geometric 

method and spatial sampling method. (a) An original slice from BrainWeb 

image (2) Image after threshold showing white and grey matter that defines 

absolute boundary for spatial sampling methods to be considered as ground 

truth. (c) 3-D tensor scale computation result from spatial sampling method 

for (b). (d) phantom with blur and noise (e) 3-D tensor scale computation 

result from differential geometric method for (d). (f, g) same as (d, e) but for 

another level of blur and noise. 

The BrainWeb MR phantom data was downloaded with the following parameters 

– matrix size: 181×217 pixels, number of slices: 181, isotropic voxel size: 1 mm, noise: 
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3% and intensity non-uniformity: 20%. The pulmonary CT images was acquired using 

the following protocol – 120kV, 100 effective mAs, pitch factor: 1.0, nominal 

collimation: 64x0.6mm, image matrix: 512x512, number of slices: 518, in-plane 

resolution: (0.55mm)
2
 and slice thickness: 0.5mm.  

(a) (b) (c) 

(d) (e) 

(f) (g) 

Figure 9 Same as Figure 8 but from another view. 

Following the fact that the definition of tensor scale is based on an image 

representation with partitioning manifold, true tensor scale may not be computed from a 
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general image. To define the manifolds, we partitioned the image into three regions, 

namely, white matter, gray matter and background (Figure 8(b) and Figure 9(b)). True 

measure of tensor scale was obtained as described in Section 2.3.4. Test images for tensor 

scale computation using the new differential geometrical approach were derived from the 

partitioned image after adding white Gaussian noise and blur (Figure 8(d, f) and Figure 

9(d, f)). Results of accuracy analysis of the efficient tensor scale computation algorithm 

as compared with the results directly obtained from the analytic definition are 

qualitatively illustrated in Figure 8 and Figure 9. As observed in both Figures, at 

moderate blur and noise, the agreement of the efficiently computed tensor scale with the 

analytic tensor scale computed in absence of noise and blur is visually satisfactory in the 

color coded illustration. The results match with each other in terms of color (orientation) 

and intensity (magnitude). However, at high noise and blur, the fine structures are lost. 

Quantitative evaluation is designed based on the matrix representation of the true 

tensor scale at a point   and the tensor scale obtained from a test image by applying the 

differential geometric algorithm. We designed an error measurement based on Log-

Euclidean distance and quantitatively evaluate the accuracy of differential geometric 

algorithm in tensor scale computation. Let   ( ) be the true tensor scale matrix at a spel 

  computed from the partitioned image and let    ( ) denote to the tensor scale matrix 

representation obtained from a test image by applying the differential geometric 

algorithm. Although, tensor scale computation methods were applied on entire image, the 

error analysis was confined to white and gray matter regions only to avoid background; 

better results were obtained when the background region was included in error analysis. 

Let   denote the region over which the error analysis is performed. The error of tensor 

scale computation is defined as the average normalized Log-Euclidean distance between 

the true and the computed tensor scales over the target region   as follows:  

      
 ∑ ‖   (  ( ))     (   ( ))‖   

∑ (‖   (  ( ))‖  ‖   (   ( ))‖)   
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‖ ‖ is the Euclidean norm of a positive definite symmetric matrix.   

Results of quantitative analysis are presented in Table 3. As observed in the table, 

the performance of the algorithm decreases, i.e., error increases with noise as well as 

blur. Based on these results, it may be reasonable to conclude that the computational 

geometric approach to tensor scale is efficient and produces acceptable tensor scale at 

moderate blur and noise. 

Table 3 Performance of the 3-D tensor scale computation algorithm based on analytic 

definition at various levels of noise and blurring. 

 B1 B2 B3 B4 B5 

N1 4.07 5.52 6.13 7.20 8.90 

N2 4.17 5.63 6.42 7.54 9.11 

N3 4.46 5.75 6.59 7.73 9.29 

N4 4.62 5.80 6.70 8.21 9.40 

N5 5.17 6.10 7.13 8.79 9.78 

Each row indicates a specific noise level that increases from top to bottom and each 
column indicates a specific blur level that increases from left to right. Results are 
reported as normalize Log-Euclidean difference (%) to the result generated by space 
sampling method for the original binary phantom. 

2.4.3 Efficiency 

The new algorithm takes 3 seconds to compute 2-D tensor scale for the BrainWeb 

phantom image slice running in a desktop with a 2.53 GHz Intel(R) Xeon(R) CPU and 

Linux OS; the original sample line based tensor scale computation algorithm [10] takes 

83 seconds for the same image. Since a 3-D implementation of the original sample line 

based tensor scale computation algorithm is not available, we calculated the expected 

computation time as follows. The 2-D sample line based algorithm with 60 sample lines 

and 60 sample points per line takes approximately one minute for an image of size 



www.manaraa.com

39 
 

 

3
9
 

       . Therefore, in 3-D with 900 sample lines (to maintain a comparable angular 

sampling rate) the total run time for a             image should be approximately  

(
   

   
)

 

     (
   

  
)                          

The multiplication by ‘2’ is added to account for tri-linear interpolation in 3-D 

image instead of bilinear interpolation in 2-D. On the other hand, the new 3-D tensor 

scale computation algorithm takes approximately fifty minutes to compute tensor scale 

for the 3-D CT image. 

2.5 Conclusion  

In this chapter, we have presented an analytic formulation for tensor scale for n-D 

images. Also, we have provided an efficient computational solution for tensor scale in 2- 

and 3-D that is based on several new methods including gray scale distance transform and 

computation of local principal curvature directions on the closest partitioning manifold 

represented by discrete edge points. Experimental results in comparison with theoretical 

results derived under the ideal condition of object partitions with no noise and blur have 

demonstrated that the proposed efficient computation method yields acceptable results at 

moderate noise and blur with image structures being visually apparent. 
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CHAPTER 3  

TENSOR SCALE BASED INTER-SLICE INTERPOLATION 

3.1 Introduction 

In this chapter, a new slice-interpolation method based on tensor scale is 

introduced and a closed form solution is presented to determine the interpolation lines in 

a gray level image using tensor scale information of adjacent slices. At each location on 

an image slice, the method derives normal vector from its tensor scale that yields trans-

orientation of the local structure and points to the closest edge point. Normal vectors at 

the matching 2-D locations on two adjacent slices are used to compute the interpolation 

line using a closed form equation. Then experimental plans and results to examine the 

accuracy performance of the method are discussed. Specifically, the algorithm has been 

applied to BrainWeb data sets and to several other images from clinical applications and 

its accuracy and response to noise and other image-degrading factors have been examined 

and compared with those of current state-of-the-art interpolation methods. Experimental 

results have established the superiority of the new tensor scale based interpolation 

method as compared to existing interpolation algorithms. Also, a quantitative analysis 

based on the paired t-test of residual errors has ascertained that the improvements 

observed using the tensor scale based interpolation are statistically significant.  

In the following, detailed algorithm for inter-slice interpolation will first be 

presented followed by experimental plans and methods. Finally, results are given and 

concluding remarks are drawn. 

3.2 Tensor Scale Based Inter-Slice Interpolation 

The general purpose of medical image interpolation is to increase image 

resolution along the slice direction using an image processing algorithm. Although 

classical interpolation methods use neighborhood intensity analysis techniques over 

adjacent slices, more advanced algorithms follow the approach of detecting “interpolation 
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lines” [69] using the correspondence of local structures in adjacent slices. Here, we 

present a new interpolation method that provides a closed form solution for identifying 

this correspondence using its tensor scale information in adjacent slices, which is used to 

compute local deformation as well as the interpolation line at the individual image point.  

 (a) 

 (b) 

Figure 10 Schematic descriptions of the principle of tensor scale based image 

interpolation. (a) Examples of normal vectors at different points inside and 

outside of a shape. (b) A closed form solution exists for computing the 

deformation vector using normal vectors. 
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The key idea is to compute the local deformation between two adjacent slices 

from their tensor scale information which is accomplished in two steps – (1) computation 

of tensor scale-derived normal vector (Figure 10 (a)) associating each image point on a 

slice to its nearest edge point and (2) determine local deformation between two adjacent 

slices using a closed form equation involving normal vectors in two adjacent slices 

(Figure 10 (b)). Let    and    be the spatially matching image points on two adjacent 

slices, namely,     and    ; thus    and    have the same 2-D coordinates, say  , in the 

two slices. Let    and    be the normal vectors at    and   , respectively. It is 

interesting to observe from the Figure that the deformation  (         ) from     to     

at the 2-D image point   may be determined by subtracting the vector    from   , i.e., 

 (         )         

In the following, we first describe the method of computing normal vectors from 

local tensor scales and then explain the interpolation method using normal vectors. 

Finally, we discuss the challenges with the method and offer their solutions.  

3.2.1 Computation of Normal Vectors Using Tensor Scale 

(a)   (b) 

Figure 11 Computation of the normal vector from local tensor scale. (a) An ambiguity in 

selecting the normal vector between   ⃗⃗⃗⃗  and    ⃗⃗ ⃗⃗ ⃗⃗   the opposite vectors along 

the minor axis of tensor scale. (b) This ambiguity is solved by analyzing 

tensor scale-derived isotropic scales along the direction of the minor axis    .  
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(a) (b) (c) 

(d) (e) (f) 

(g) (h (i) 

Figure 12 Intermediate results of tensor scale based image interpolation on MR brain 

data. (a-c) Three successive slices from the BrainWeb MR phantom data. (d,e) 

Normal vector fields computed from (a,c). (f) Color-coded deformation vector 

field computed from (d,e) on the slice plane located at the middle of the slice 

of (a,c). (g) Image interpolated from (a) and (c). Compare the result with (b). 

(h) Interpolation error computed from (b) and (g). (i) Magnitude of the 

deformation field. 

As mentioned earlier, the purpose of normal vector is to represent the nearest edge 

point associated with each image point and its direction is orthogonal to the orientation of 
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the local structure (Figure 10(a)). Following the fact that tensor scale represents the 

orientation of the local structure along with its size in different directions, the association 

between normal vector and tensor scale is obvious. Specifically, the normal vector is 

related to the minor semi-axis of the tensor scale at an image point  . However, as 

illustrated in Figure 11(a), an ambiguity arises as the tensor scale of a point   fails to 

directly indicate which of the two vectors   ⃗⃗⃗⃗  and    ⃗⃗⃗⃗⃗⃗  points to the nearest boundary. This 

ambiguity is solved by analyzing tensor scale-derived isotropic scale along the direction 

of minor axis    . As illustrated in Figure 11(b), isotropic scales reduce along the vector 

  ⃗⃗⃗⃗  pointing to the local boundary; therefore,   ⃗⃗⃗⃗  represents the normal vector at  . The 

color coded representation of normal vector map for the image of Figure 12(a, c) is 

presented in Figure 12(d, e). 

3.2.2 Interpolation Algorithm 

In the beginning of this section, we have described the basic principle of 

computing local deformation using tensor scale-derived normal vectors. Here, we 

describe the new interpolation algorithm.  

Let us consider two image slices     and     separated by a distance of     as 

shown in Figure 13(a) and we want to interpolate the intensity at a target point   

(      ) in between the two slices. Here, the location    of   in the z-direction is defined 

with respect to the location of the base slice    ; thus,         . Also, we assume 

that   and   are integer valued. The interpolation method essentially computes the 

interpolation line  ( )       
 passing through the target point  ; the line  ( ) gives three 

dimensional coordinates of a point at the height of   from the base slice. Once the 

interpolation line  ( ) is determined, the two points    and    at the intersection of the 

line with respective slices are computed and the intensity at   is determined using linear 

interpolation of the intensities at    and   . Thus, to complete the algorithm, we need to 

describe the method of computing the interpolation line  ( ).  
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(a) 

 (b) 

Figure 13 Illustration of computing the interpolation line  ( ) associated with an image 

point   on the interpolation plane with the information from tensor scale in 

images of     and    . (a)   locates halfway between two slices. (b) Same as 

(a) except that   is close to the lower slice    . Although, the line   ( ) is 

same in both (a) and (b), the final interpolation line  ( ) is changed due to 

different shifts required under the two cases. Note that the point    is close to 

   in (b). 
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First, the projections    and    of the point   on the two slices     and     are 

determined; thus,    (       )  and    (     ) . Let    and    be the normal 

vectors at     and    with    and    being the nearest points on respective local 

boundaries as illustrated in Figure 13(a). It may be noted that the line   ( ) obtained by 

joining the two points    and    results in a local 2-D deformation of       along the 

slice plane when the image slice     warped onto    ; let          . However, the 

line   ( ) may not pass through the point  . Therefore, the interpolation line is computed 

by appropriately shifting the line   ( ) along the slice plane so that it passes through  . 

The final interpolation line is computed using the following equation: 

 ( )  [

 
 
  

]  (    )  [

      
      

   

]  

In the above equation,    and    denote the two unit vectors along the x- and y-

coordinate axes, respectively. It may be interesting to note that, if the target point   is 

moved close to lower slice     at (        ) as illustrated in Figure 13(b), the initial line 

  ( )  is not changed. However, in this situation, we need to translate the line   ( ) 

differently so that it passes through the target point, which is now closer to slice    . 

Thus, the final interpolation line  ( ) is changed as illustrated in Figure 13(b); note that in 

the above equation,    should be replaced by     . Since,  ( ) intersects the line      at 

 , the point    should be close to   . Again, on the interpolation line  ( ), the target 

point   is much closer to    than to   . Thus, following linear interpolation, the 

interpolated intensity at   should be very close to that of the point    which is again close 

to the point   . The method works similarly when the target point   is moved close to the 

upper slice    . Further, it may be pointed out that the shifting of initial interpolation line 

  ( )  to  ( )  to determine the final interpolation line at   essentially assumes that 

deformation vectors over a small neighborhood are similar and ignores local variations in 

the deformation field. This assumption is made by most registration-based medical image 
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interpolation algorithms [120] where the deformation field is represented using a smooth 

function. It may be noted that, in our algorithm, the shift of an interpolation line is always 

smaller than one voxel in the slice direction. 

3.2.3 Algorithm Challenges and Their Solutions 

As discussed above, the basic principle of the method lies in identifying the 

nearest boundary point at each image point which is represented by its normal vector. A 

major challenge with this approach is that the normal vector is less stable near the medial 

axis of a local structure as it may point to any of the two opposite boundaries of the local 

structure leading to an ambiguity. Depending upon which of the two opposite boundary 

points is selected, the normal vector will significantly differ thus being a source of errors 

in the computation of deformation vectors used for interpolation. 

(a) (b) 

(c) (d) 

Figure 14 Illustration of tensor scale derived local structure width. (a) A binary phantom 

image. (b) Tensor scale-derived isotropic scale image. (c) Local structure 

width map. (d) Computed medialness. 
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This problem is overcome by detecting local medial points and taking a special 

care at those points while computing the deformation vector or the interpolation line. The 

medialness at an image location is determined by comparing its isotropic scale with 

another tensor scale-derived feature indicating the “local structure width”. At any image 

point  , the local structure width denoted by    ( ) represents the width of the local 

structure around   and is defined as twice the closest maximal isotropic scale along the 

direction of the tensor scale minor axis   ( ). Figure 14 illustrates the local structure 

width map for a phantom image computed using the above definition. Finally, the 

medialness of an image point  , denoted by  ( ), is defined as follows: 

 ( )  {

      |  ( )|     ( ) 

 |  ( )|

   ( )
           

 

Here, image points with a medialness value greater than or equal to 0.75 are 

considered as medial points which are treated separately to avoid the errors due to the 

ambiguity outlined above. Selection of a threshold close to ‘1’ makes the algorithm 

vulnerable to noise. On the other hand, a lower value of the threshold leads to exclusion 

of image points. Here, we have used a threshold of 0.75 to ensure that 75 percent of 

image points may directly be used in the interpolation algorithm. To solve the problem of 

ambiguity at medial points, we assume that that the displacement of a structure between 

two adjacent slices is less than half of the local structure width. 

Let us consider the situation of Figure 15 where the projection of the interpolation 

point   on the slice     is a medial point and let   and    be the nearest points on the two 

opposite edges of the structure around   . It may be noted from the figure that the point   

on the slice     corresponds to the edge point   on the matching structure around    on 

the slice    . Due to the ambiguity near the medial point   , it is difficult to say whether 

   ⃗⃗⃗⃗⃗⃗  ⃗  or     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is the true normal vector. However, with the assumption that the local 

deformation is less than half of the structure width, the magnitude of the deformation 
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using the correct correspondence of   and   must be less than that of the wrong 

correspondence of    and  . Therefore, the 2-D deformation     is computed using the 

following equation 

    {
         |     |  |      | 

                 
 

 

Figure 15 A schematic description to solve ambiguities of selecting normal vectors at 

medial points. At a medial point   , there is an ambiguity of the true normal 

vector between    ⃗⃗⃗⃗⃗⃗  ⃗ and     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . With the assumption that a local deformation is 

less than half the structure width, the magnitude of the deformation using the 

correct correspondence of   and   must be less than that of the wrong 

correspondence of    and  . Therefore,   ⃗⃗⃗⃗  is selected as the correct 

correspondence to generate the interpolation line. 
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The situation where the projection point    is a medial point may be solved 

similarly. Finally, a Gaussian smoothing filter of kernel size     is applied on the 

computed deformation field to capture larger contextual information. 

3.3 Experimental Methods and Results 

In this section, we describe our experimental approach to examine the 

performance of the tensor scale based inter-slice interpolation method. We then evaluate 

the accuracy of the tensor scale based method and compare the performance with current 

state-of-the-art methods. 

The accuracy of the tensor scale based inter-slice interpolation method has been 

examined both qualitatively and quantitatively on phantom and real images and has been 

compared with a current state-of-the-art registration based method [120]. For the 

registration based method, both B-spline and Demons registration techniques, 

implemented in ITK [121], were used for comparison. For the B-spline registration based 

algorithm, we used the parameter setting recommended in [120]. Also, for both the B-

spline registration based and Demons registration based algorithms, we used the stopping 

criterion as minimization of the residual errors for known truths. Thus, we experimental 

results presented here represent the optimum performance for the two methods in terms 

of iteration number. On the other hand, for the new method, no such stopping criterion or 

iteration number is needed.  

Quantitative evaluation experiments were designed following the conventional 

approach [120] of evaluating an image interpolation approach. Specifically, for a given 3-

D image consisting of   uniformly spaced slices, each slice except the first and the last 

one were removed one at a time and were regenerated from its two neighboring slices by 

a given method of interpolation. The error of the specific interpolation method was 

computed by comparing the original slice and the one obtained by interpolation. The 

mean absolute difference was used to measure the accuracy of the corresponding 



www.manaraa.com

51 
 

 

5
1
 

interpolated slice. Let          (     ) and              (     ), respectively, denote the 

original and the interpolated image intensities at the in-plane image location (   ) on the 

 th slice of image of size      . The interpolation error for the  th slice, denoted as 

    , is computed as follows: 

     
 

  
∑ ∑|         (     )               (     )|

 

   

 

   

 

Finally, the interpolation error over the entire image, denoted by    , is 

computed as:  

    
 

   
∑     

   

   

 

In our experimental study, we have used both phantom and real medical images. 

The phantom data set was generated from the simulated brain MRI data from the 

BrainWeb site (http://www.bic.mni.mcgill.ca/BrainWeb). Specifically, the T1 weighted 

MR image (in plane size:        ; number of slices: 181) of anatomical model for 

normal brain at 0% noise, 0% intensity non-uniformity and           voxel size 

was used. Two sets of test phantoms were generated from this simulated data. The first 

dataset was created by adding correlated white Gaussian noise at different SNR values 

while the other dataset was produced by adding different levels of intensity 

inhomogeneity. Ten different SNR values ranging between 50 and 10 were selected for 

the experiment. To examine the robustness of the method with respect to the intensity 

inhomogeneity, a multiplicative Gaussian inhomogeneity model was used with its center, 

height, and width chosen randomly. Altogether, fifteen images at different intensity 

inhomogeneity levels with the width of the inhomogeneity Gaussian varying between 68 

and 132 mm and the height varying between 10% and 50% of the image intensity range 

were used for the experiment. Specifically, three Gaussian inhomogeneity images were 

randomly generated at varying heights, widths, and locations of the center. Each of these 
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initial inhomogeneity maps was multiplied by a constant   and added to the original 

image to obtain a test image at a given percentage of intensity inhomogeneity as defined 

by the following equation:  

                               
                            

                   
 

For a given percentage of inhomogeneity and a given initial inhomogeneity map, 

a test image was generated and was used for the experiment. For a given method, the 

error      was computed for each slice             in the test image. Since we 

used three initial inhomogeneity maps, we got three measures of      for the  -th slice 

and a given method at a fixed percentage of inhomogeneity; an average of these three 

errors was used to compute     and for paired t-test while comparing with results from 

another method.  

In addition, sixteen 3-D images from different body regions and different clinical 

applications were used to examine the performance of our method on real data. Our first 

data set consists of five abdominal CT datasets from five different subjects with voxel 

size:                   and in-plane grid size:         with the number of 

slices varying between 64 and 319. For convenience, we will refer to these images as 

Abdomen1, Abdomen2,…,Abdomen5, respectively. Our next data set included CT 

images of four cadaveric ankle specimens scanned with a Siemens Sensation 64 Multi-

slice CT scanner at 120 kVp and 140 mAs (voxel size:                  ) 

adequately displaying trabecular bone micro-architecture. For these images, the common 

in-plane image grid size was         and the number of slices varied between 334 and 

336. We will refer to these images as Ankle1, Ankle2, Ankle3, and Ankle4, respectively. 

The last group consisted of seven pulmonary CT images from seven different subjects 

scanned on a Siemens Sensation 64 Multi-slice CT scanner at 120 kVp and 200 mAs 

yielding                  . The in-plane grid size for these images was 512×512 

and the numbers of slices varied between 519 and 728. These images will be referred to 
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as Lung1, Lung2, …, Lung7. Ankle and lung data sets were chosen to evaluate the 

performance of an algorithm under changing topology and shapes of micro-structures 

along the slice direction. For each of the phantom as well as medical data, the overall 

interpolation error was compared by analyzing their     values. The errors on 

individual slices were computed for different methods and paired t-tests were performed 

to evaluate statistical reliability of differences in overall interpolation errors by different 

methods. The p-value of 0.01 was considered significant. 

 

Figure 16 Performance of three interpolation methods on the BrainWeb phantom dataset 

with additive white Gaussian noise at various levels of signal-to-noise ratio. 

The mean error was computed as the     value over the entire image while 

the standard deviation of errors was computed as the standard deviation of 

     values from individual slices. As compared with the two registration 

based methods, the new method outperforms both of them except for the four 

cases for which the differences between the B-spline and the new method are 

statistically identical - marked with “NS” (non-significant). 

Here, we present results of the experiments to compare the new interpolation 

methods with two registration based methods using B-spline and Demons techniques at 
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various levels of added noise and intensity inhomogeneity on the BrainWeb phantom 

dataset. The tensor scale here is based on algorithmic approach as shown in [13]. Results 

of quantitative analysis for three different methods at various noise levels are presented in 

Figure 16. At every level of noise, the tensor scale based interpolation method has 

outperformed the demons registration based method and the results are found to be 

statistically significant using a paired t-test. As compared with the B-spline registration 

based method, the new method has outperformed (p-value < 0.01) at all levels of noise 

except at SNR = 10, 12, 14, and 16 where interpolation errors by the two methods are not 

statistically different.  

 

Figure 17 Performance of three interpolation methods on the BrainWeb phantom dataset 

with different multiplicative Gaussian intensity inhomogeneity added. The 

mean error was computed as the     value over the entire image while the 

standard deviation of errors was computed as the standard deviation of      

values from individual slices.      represents the average interpolation 

errors on the i-th slice for three different inhomogeneity maps at a fixed 

percentage of inhomogeneity. 
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These results indicate, that although the tensor scale based method outperforms 

the two registration based methods, the overall difference in performance is reduced with 

increasing noise. A possible argument behind the observation is that the closed form 

equation for the interpolation line in tensor scale based approach uses the tensor scale of 

only two points, one from each adjacent slice. Thus, the approach has less strength for 

statistical noise smoothing as compared to the two registration-based methods and the 

performance of the current tensor scale based registration method on high noisy images 

may be a limitation. A possible way for improving the performance of the tensor scale 

based method may be to amalgamate the closed form solution into the registration 

framework. 

Comparative results of the three methods at various levels of image 

inhomogeneity are presented in Figure 17. It may be noted from these results that effects 

of image inhomogeneity for all three method are minimal which was expected as 

intensity inhomogeneity has only limited effects on local structural information in an 

image. Also, it is important to note that at all examples of inhomogeneity, the tensor scale 

based interpolation method has outperformed the two registration based methods (p-value 

< 0.01). Here, it may be observed from Figure 16 and Figure 17 that the standard 

deviation values are somewhat high as compared to the corresponding differences of 

    values. Yet, the p-values indicated statistical significance of the measured 

differences in errors which is associated with a proper use of a paired t-test. The results of 

these experiments suggest that although there are significant variations in interpolation 

errors from one slice to another, the differences in performance for two methods are 

consistent from one experiment to another. 

Results of applications of the three methods on several medical images are 

illustrated and visually compared in Figure 18 to Figure 20. 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 18 Results of applications of different interpolation methods on the ankle CT data 

Ankle1. (a-c) Three consecutive image slices from the original data. (d-f) 

Interpolated results for the central image slice (b) from the two adjacent slices 

(a,c) using B-spline (d) and Demons (e) based registration methods and the 

tensor scale based method (f). (g-i) Absolute errors by corresponding 

interpolation method as computed by comparing with the original image slice. 

Interpolation error is reduced using the tensor scale method (p-value   0.01). 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 19 Same as Figure 18 but for three consecutive image slices from the pulmonary 

CT image Lung1 at 0.5 mm slice thickness.  

In each of these Figures, the top row show three consecutive image slices from 

the specific dataset. The middle row presents the interpolated results for the central slice 

of the top row computed by three different methods using the left and right image slices 

of the top row. The last row indicates the absolute error maps for corresponding 
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interpolated result as compared with the original image slice. In the middle and last rows, 

the images on the left and central columns represent the results of B-spline and Demons 

based registration based methods. The right column presents the results of the tensor 

scale based method. 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 20 Same as Figure 18 but for three consecutive image slices from the lower 

abdominal CT image Abdomen1 at 1mm slice thickness. 

In all these examples, reduction of interpolation errors by the tensor scale based 

method is visually notable. For the example of Figure 18, it may be noted that all 
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methods including the tensor scale based algorithm produce high concentration of 

interpolations errors in the trabecular bone region. These errors are primarily contributed 

by the high-frequency changes in trabecular bone topology from one slice to another. 

Similar to other algorithms, tensor scale based registration method may fail to 

compensate for large topological variations from one slice to another. A quantitative 

analysis of the results is presented in Figure 21 which indicates the mean and standard 

deviation of interpolation errors by three methods for different medical images.  

 

Figure 21 Performance of three interpolation methods on sixteen different medical 

images selected from different clinical applications. The mean error was 

computed as the     value over the entire image while the standard 

deviation of errors was computed as the standard deviation of      values 

from individual slices. For all examples, the tensor scale based method has 

outperformed the two registration based methods (p-value   0.01). 

The mean error was computed as the     value over the entire image while the 

standard deviation of errors was computed as the standard deviation of      values from 

individual slices. As observed in this figure, the tensor scale based method has always 
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outperformed the other two methods with a clear margin. It may be interesting to observe 

from the quantitative results that, across all data and methods, the standard deviation 

values are small as compared to corresponding mean error. It indicates that the 

interpolation error is a highly reliable parameter to determine the quality of individual 

methods. Also, a paired t-test of errors over individual image slices was performed 

between tensor scale based methods and each of the two registration based methods. The 

results of every paired t-test comparing the performance of the tensor scale and another 

method demonstrated the superiority of the tensor scale method p-value < 0.01, see 

Figure 21. Further, it may be observed that errors for ankle and pulmonary images are 

relatively larger as compared to abdominal images. Possibly, it is caused by rapid 

changes in both topology and geometry of trabecular bone in ankle images and both 

airways and vasculature in pulmonary images. 

3.4 Conclusion  

In this chapter, we investigated an application of tensor scale to medical image 

inter-slice interpolation. A closed form solution for computing interpolation lines using 

tensor scale has been introduced which has contributed to a new tensor scale based 

interpolation algorithm. Experimental results have demonstrated that the new 

interpolation method outperforms state-of-the-art registration based interpolation 

techniques on real clinical images and the statistical significance of the improvements 

was observed. 
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CHAPTER 4  

TENSOR SCALE BASED DIFFUSION IMAGE FILTERING 

4.1 Introduction 

In this chapter, we first describe a tensor scale based diffusion filtering that is 

primarily developed on the theory of anisotropic diffusion originally proposed by Perona 

and Malik [14] and subsequently, studied by others [9, 122]. The basic objective of our 

tensor scale based filtering is to govern the diffusion process in a space-variant and 

orientation-dependent fashion to optimally fit with local image structures captured in the 

form of tensor scale. Subsequently, experimental plans and results are provided to 

evaluate the performance of the method. Specifically, the algorithm has been applied to 

both 2- and 3-D geometric phantoms and real images, and its performance on reducing 

noise as well as preserving structures is examined and compared with those of gradient 

and structure tensor based anisotropic diffusion methods. Experimental results have 

established the superiority of the new tensor scale based method as compared to existing 

filtering algorithms.  

In the following, I will first present detailed algorithm for anisotropic diffusion 

filtering followed by experimental plans and methods. Finally, results are given and 

concluding remarks are drawn. 

4.2 Tensor Scale Based Diffusion Filtering 

4.2.1 Anisotropic Diffusion Filtering 

Anisotropic diffusion [14] was originally described to encourage diffusion within 

a region (characterized by low intensity gradients) while discouraging it across object 

boundaries (characterized by high intensity gradients). The anisotropic diffusion process 

at any spel   may be defined as follows: 
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∫  
 

     

where   is image intensity function;   is time variable; “div” is divergence operator; 

     is diffusion flow vector;   is diffusion conductance function;   is intensity 

gradient vector;    is the volume enclosed by the surface   surrounding  ; and         

where   is a unit vector which is orthogonal and outward-directed with respect to the 

infinitesimal surface element   . The key idea of anisotropic diffusion [14] is to spatially 

vary the conductance by a nonlinear and non-increasing function of gradient magnitude, 

e.g.      ( | |    ⁄ ) where   is the controlling parameter. See Figure 22 for a valid 

shape of conductance function with gradient magnitude and the resultant relationship 

between the magnitudes of gradient and flow. 

 

Figure 22 The shapes of diffusion conductance (A) and diffusion flow magnitude (B) 

functions, respectively, with gradient magnitudes complying with the basic 

idea behind anisotropic diffusion [14]. 

Guided by the above theory, a diffusion filtering process in a digital image is 

formulated as an iterative process as follows: 

  ( )  {

 ( )        

    ( )    ∑  (   )    (   )   (   )
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where,    represents image intensity at the     iteration;    is pixel adjacency relation;    

is a diffusion constant;      is intensity flow vector at (   )   iteration; and  (   ) is 

unit vector along the direction from   to  ; and ‘ ’ is the vector dot product operator. 

Under a uniform pixel adjacency relation, the diffusion constant    should satisfy the 

following inequality to ensure a monotonic intensity variation with iterations: 

   
 

∑   (   )    
              

Using standard 26-adjacency in 3-D,    = 1/27. The flow vector    is determined 

by the following equation: 

  (   )    (   )  (   )  

where, 

  (   )  
  ( )    ( )

|   |
 (   )  

and    is an orientation- and space-adaptive conductance function at     iteration. As 

mentioned before,    should be a nonlinear function (see Figure 22) of local intensity 

gradient    that eventually leads to a non-monotonic behavior of flow with gradients. 

Gaussian functions, as follows, have popularly been used for    

  (   )   
 

| (   )| 

 [ (   )]   

where   is the control parameter determining the degree of filtering. When   is large, the 

degree of filtering is high and possibilities of blurring across boundaries and of smearing 

out regions containing fine detail increase. On the other hand, when   is small, the 

filtering process performs conservatively and more noise survive after filtering.  

4.2.2 Tensor Scale Based Conductance 

In conventional diffusion filtering methods [14, 122], diffusion process adapts to 

local structure orientation using gradient information while the diffusion parameter   is 

kept fixed that limits the fine control on and adaptivity to local image structural 
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properties. Weickert et al. [29] introduced the notion of structure tensor to control this 

parameter and demonstrated its use in along structure smoothing. The motivation of our 

work is to use geometric tensor information of local structures in filtering that facilitates 

along structure smoothing while preserving boundary sharpness as shown in Figure 23. 

Specifically, the controlling parameter   is determined by local tensor scale in a space- 

and direction-variant manner as follows: 

 (   )        (   (  ( )   ( )))      

(a) (b) 

Figure 23 Behavior of the Gaussian mapping involved in the conductance function 
calculation: (a) controlling parameter is kept fixed over the entire image and 
the mapping is isotropic everywhere; (b) tensor scale controlled conductance 
function helps to achieve anisotropic dynamic conductance value so that the 
diffusion process is guided in a direction variant manner.  

The above formulation ensures a minimum diffusion of      during the filtering 

process; the second component of the expression uses a monotonically non-decreasing 

function   to control local diffusion process in a direction-variant manner using the two 

tensor scale derived parameters   ( ) and   ( ). The term    determines the sensitivity 

of the diffusion process with local tensor scale parameters. The tensor scale parameter 

  ( ) is defined as follows: 
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  ( )  √   
  ( )     

where     is the unit vector along the direction from   to  . Note that, by considering 

tensor scale  ( ) as a co-variance matrix, the parameter   ( ) gives the square root of 

the variance of the system along the vector    . Here,   ( ) is treated as an approximate 

measure of the radial length of the ellipsoid  ( ) along the direction    . In this paper, 

we have used the following functional form for   

 ( )   
 

  

   
 
  

where    is the maximum expected radial length of tensor scale ellipse computed as the 

maximum DT value in the image. In all experimental results presented, the parameters    

is determined as the overall noise level in the image computed in the same way as 

described in [9]; the value the parameter      is chosen as 25% of the value of   . 

Finally, for all experimental results the filtering process was run for twenty iterations. 

4.3 Experimental Methods and Results 

In this section, we describe our experimental approach to examine the 

performance of the tensor scale based anisotropic diffusion filtering method. We then 

evaluate it in terms of residual noise relative contrast and compare the performance with 

gradient and structure tensor based anisotropic diffusion method on both 2-D and 3-D 

images. 

The purpose of the experiment is to examine the performance of tensor scale 

based filtering methods as compared to intensity based and structure tensor based 

diffusion filtering algorithms. ITK implementation [121] of gradient-based diffusion 

filtering and their recommended values of 0.125, 3.0 and 5 were used for the time step, 

conductance parameter and the iteration number for 3-D image. An algorithm was 

implemented for structure based diffusion filtering in accordance to the description of 

[29] and the parameter value settings of 0.001 for regularization parameter  , 1 for 
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threshold parameter  , 0.3 for noise scale  , 2 for integration scale  , and 10 for iteration 

time   were used as suggested by the author. Three image sets were used in this 

experiment – (1) one large 3-D phantom image containing different geometric structure at 

various structure-scales as well as various separations scale, (2) a photographic image of 

an aquarium and (3) five lung CT images of human subjects. Both phantom and CT 

images were corrupted with five different levels of noise (8% to 20%) and different 

filtering algorithms were applied to the noisy images to qualitatively evaluate their 

performance. A measure of residual noise was used to assess the performance a method 

and also, a measure of structure blurring was examined for the phantom image since the 

knowledge of structures is needed define this measure.  

Let   be an original phantom or lung image;   was corrupted by adding a zero-

mean Gaussian noise   generating a noisy test image       . Noise level was defined 

over the test region   in an image as follows: 

       √
∑   ( )   

∑   ( )   
  

It may be noted that percent of noise is essentially an inverse measure of signal to 

noise ration or SNR widely used as a measure of noise level. Let     denote the image 

obtained by applying a filtering algorithm to the noisy image   . Thus the residual noise 

in the filtered image is         , and an overall measure of residual noise is defined 

as follows: 

        √
∑   

 ( )   

∑   ( )   
  

Here, measurements are calculated for VOIs in the experimental images, from 

each pulmonary CT image and phantom image, fifty VOIs, each of size 50×50×50 

voxels, will be randomly selected inside a lung region giving a total of 250 VOIs. 
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Relative contrast is defined for the phantom image to measure structure 

preserving property of a filtering method in terms of object to background contrast 

relative to residual noise. Let    and    denote the set of object and background pixels in 

a phantom image that are no further than   pixels from the object/background interface. 

Such pixels are identified in a binary image using standard morphological operations. We 

did not use the entire object/background regions for measure relative contrast as the 

notion of structure blurring is absent in deep interior and thus, inclusion of such regions 

in analysis only reduces the sensitivity of the measurement. The performance of different 

methods was analyzed for two values of 1 and 2 for  . Finally, the relative contrast in an 

image   is defined as 

   
|       |

√      

 

where      and     are the mean and standard deviation of intensities over    while     

and     denote same entities over   . Here, relative contrast measurements are calculated 

along boundaries of geometric structures, background and object regions on either of the 

boundary are identified with different radius (for our experiment, radius of 1 and 2 voxels 

are examined) based on original binary phantom data and RC is calculated respectively. 

Figure 24 illustrates results of three filtering algorithms on a photographic image 

of a fish in an aquarium containing visible noise. Results of application of the three 

filtering algorithms are presented in Figure 24(b-d). As observed in these figures, among 

the three results, the maximum visual perceptual noise cleaning and boundary sharpening 

is achieved using the tensor scale based method (Figure 24(d)). This observation is 

confirmed in enlarged views (Figure 24(e-h)) of a small box selected from the matching 

region in the original and the three filtered images. 
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(a) (b) 

(c) (d) 

(e) (f) (g) (h) 

Figure 24 A qualitative comparison among different diffusion filtering methods. (a) The 

original digital image with natural noise. (b-d) Smooth images obtained by 

using gradient (b), structure tensor (c) and tensor scale (d) based diffusion 

filtering methods. (e-h) Zoomed in displays of the matching region cropped 

from (a-d), respectively. It may be noted that the tensor scale based method 

has outperformed the other two methods in smoothing along the structures 

while preserving boundaries and effect is more prominent in the zoomed 

displays in (e-h). 

Figure 25 illustrates results of different filtering methods on a 2-D phantom image. 

As observed in the Figure, at the finest scale, the gradient and structure tensor based 

filtering algorithms have failed to maintain the separate identity of the three sinusoidal 

curves at several locations. On the other hand, the tensor scale based algorithm has 
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successfully preserved the separation of the three curves at the finest scale while 

maximally reducing noise over homogenous regions. 

(a) 

(b) 

(c) 

(d) 

(e) 

Figure 25 Comparative results of image filtering in a 2-D phantom. (a) The original 

phantom image. (b) Degraded image after adding Gaussian white noise. (c-e) 

Results of gradient (c), structure tensor (d) and tensor scale based (e) 

anisotropic diffusion filtering methods. 
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(a)  (b) 

(c)  (d)

(e) 

Figure 26 Results of 3-D image filtering. (a) An original image slice from a pulmonary 

CT image of a patient. (b) Degraded image after adding Gaussian white noise. 

(c-e) Results of 3-D image filtering using gradient (c), structure tensor (d) and 

tensor scale (e) based diffusion. 
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Table 4 Results of quantitative comparison among three different methods in terms of 
residual noise after filtering on different images.  

Image 
Original 
Noise(%) 

Residual Noise(%) 

G-algorithm S-algorithm T-algorithm 

3-D 
Phantom 

8.0 7.8 7.7 5.9 

10.0 9.5 9.5 6.8 

12.0 11.1 11.3 7.8 

15.0 13.6 13.7 9.3 

20.0 17.3 17.8 11.4 

3-D 
Lung 

CT-Data 
1 

8.0 7.5 8.7 4.4 

10.0 7.7 9.3 5.3 

12.0 9.5 9.9 5.9 

15.0 11.7 10.9 7.0 

20.0 14.8 14.5 9.4 

3-D 
Lung 

CT-Data 
2 

8.0 7.3 7.5 4.8 

10.0 9.0 9.4 5.9 

12.0 10.7 11.1 6.5 

15.0 13.5 14.0 9.2 

20.0 17.9 18.0 10.7 

3-D 
Lung 

CT-Data 
3 

8.0 7.2 7.5 4.6 

10.0 9.1 9.3 6.0 

12.0 10.8 11.2 6.8 

15.0 13.6 14.1 9.5 

20.0 18.0 18.6 11.7 

3-D 
Lung 

CT-Data 
4 

8.0 7.4 7.6 5.0 

10.0 9.1 9.4 5.7 

12.0 10.5 10.9 6.4 

15.0 13.2 13.7 9.0 

20.0 17.7 18.2 10.8 

3-D 
Lung 

CT-Data 
5 

8.0 7.3 7.4 4.5 

10.0 8.9 9.2 5.5 

12.0 10.4 10.7 6.3 

15.0 12.9 13.2 8.9 

20.0 17.1 17.6 10.1 
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Figure 26 illustrates the results of three filtering methods on a 3-D pulmonary CT 

image. Figure 26(a) presents an axial image slice from the original CT data; here, a 

maximum intensity projection (MIP) display of the image region covering ±10 image 

slices around the target slice is used to depict partial 3-D information of the local 

pulmonary vasculature. The same image region after adding a 12% white Gaussian noise 

is shown in Figure 26(b) while the results of gradient, structure tensor and tensor scale 

based filtering algorithms are presented in Figure 26(c-e). As observed in these results, 

the diffusion filtering algorithm has reduced some noise (Figure 26(c)) although, it has 

blurred fine structures at several locations and also the residual noise is visually apparent. 

While the structure blurring is visually less prominent using the structure tensor based 

method (Figure 26(d)), the presence of residual noise is visible and the peripheral vessels 

are visually blurred. On the other hand, the tensor scale based filtering algorithm has 

successfully cleaned noise (Figure 26(e)) while preserving almost every fine structure 

visible in Figure 26(a).  

Table 5 Results of quantitative comparison among three different methods in terms of 
relative contrast after filtering on 3-D phantom image.  

Radius 
Original 
Relative 
Contrast 

Relative Contrast After Filtering 

G-algorithm S-algorithm T-algorithm 

1 voxel 

9.1 8.3 8.1 9.5 

8.6 7.1 7.7 9.0 

8.0 7.3 7.3 8.5 

7.1 6.1 6.7 7.8 

6.0 4.9 5.5 6.7 

2 voxels 

9.8 8.6 8.4 10.5 

9.2 7.3 8.0 10.1 

8.6 7.7 7.7 9.4 

7.7 6.5 7.1 8.8 

6.5 5.3 5.9 7.6 



www.manaraa.com

73 
 

 

7
3
 

The superiority of the tensor scale based filtering method on the phantom image is 

further confirmed in the results of quantitative analysis in Table 5 where the tensor scale 

based method has achieved minimum residual noise and maximum enhancement in 

relative contrast measures among all three method algorithms. In these tables, G-, S- and 

T-algorithms are used as abbreviations for gradient, structure tensor and tensor scale 

based diffusion filtering algorithms. As shown in the result, the fact that the relative 

contrast result given by tensor scale based method is higher than the value before filtering 

can be served as the evidence that tensor scale based method is capable of reducing noise 

in an image while preserve the structure boundary.  

4.4 Conclusion  

In this chapter, we investigated an application of tensor scale to anisotropic 

diffusion image filtering. Tensor scale generates an optimal scale parameter that fits with 

local image structures and governs the diffusion process in a space-variant and 

orientation dependent fashion. The performance of tensor scale based filtering has been 

compared with gradient and structure tensor based diffusion filtering algorithms and both 

qualitative and quantitative results have demonstrated improvements in image filtering 

using tensor scale. 
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CHAPTER 5  

TENSOR SCALE BASED N-LINEAR INTERPOLATION 

5.1 Introduction 

In this chapter, a new n-linear method based on tensor scale is introduced. The 

basic idea is to bring the notion of an anisotropic space where distance increases slower 

along the direction of the local structure while it decreases slowly across it. Experimental 

plans and results to examine the performance of the method are then discussed. 

Specifically, the algorithm has been applied to 3-D phantom image containing different 

geometric structure at various structure scales and several 3-D medical images. The 

performance of tensor scale based n-linear interpolation is compared with standard n-

linear and windowed Sinc interpolation results. Experimental results have shown a clear 

improvement using tensor scale in n-linear interpolation.  

In the following, detailed algorithm for tensor scale based n-linear interpolation is 

first presented followed by experimental plans and methods. Finally, results are given and 

concluding remarks are drawn. 

5.2 Tensor Scale Based n-linear Image Interpolation 

Linear interpolation is a widely used technique for image resampling. In a 1-D 

discrete signal, the linear interpolation in between two successive sample values is 

defined by the straight line joining the sample points. In an  -D digital image, image 

intensity values are known at spels      with integral co-ordinate values. Following 

the principle of linear interpolation, the intensity value at a location       with 

unconstrained co-ordinate values is determined as a weighted sum of intensity values at 

   vertices of the binding box of    (          ). Let ⌊ ⌋ and ⌈ ⌉ be the floor and 

ceiling operators, then the vertices of the binding box of    are    (⌊  ⌋ ⌊  ⌋   ⌊  ⌋), 

    (⌈  ⌉ ⌊  ⌋   ⌊  ⌋),   ,      (⌈  ⌉ ⌈  ⌉   ⌈  ⌉). The estimated intensity value 

at    is given as follows: 
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 (  )  
∑    (  )

  

   

∑   
  

   

  

where,  

   ∏(⌈  ⌉    )

 

   

    (   ⌊  ⌋)∏(⌈  ⌉    )

 

   

       ∏(   ⌊  ⌋)

 

   

  

 

Figure 27 2-D illustration of tensor scale based n-linear interpolation algorithm. 

Conventional linear interpolation calculates the intensity at    based on linear 

distance weight so that    will be assigned with the greatest weight value. 

From the observation, such weight leads to cross region mixing. By 

incorporating tensor scale, weight for    and    will be encouraged and 

smoother structure boundary will be generated.   

The basic idea of using tensor scale in linear interpolation as illustrated in Figure 

27 is to bring the notion of an anisotropic space where distance increases slower along 

the direction of the local structure while it decreases slowly across it. A smaller value of 

   
(  ) indicates that the vertex    is close to the partitioning manifold along the vector 

     
 and therefore, the weight of    in interpolating the intensity value at    should be 
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discouraged to avoid cross-region mixing. On the other hand, a larger value of    
(  ) 

means that    is relatively far from the partitioning manifold along the vector      
 and 

therefore a generous value of weight for    may be used along-the-edge smoothing. 

Therefore, the tensor scale based weights for linear interpolation are defined as follows:  

  
       

(  )  

Finally, the tensor scale based linear interpolation procedure is defined by the 

following equation: 

 (  )  
∑   

  (  )
  

   

∑   
   

   

  

5.3 Experimental Methods and Results 

The performance of the tensor scale based  -linear image interpolation method 

was evaluated using a phantom image and several medical images from different 

applications and was compared with standard  -linear and windowed Sinc interpolation 

methods [123]. A 3-D phantom image of size             was generated a 

sinusoidal wavy (along the slice direction) pattern of geometric structures with its scales 

varying from 5 to 10 voxels. Also, the following sets of medical images were used in our 

experiment: 1) The BrainWeb MR phantom data; 2) Seven human pulmonary multi-

Detector CT images with voxel size of                   and in-plane matrix grid 

size of         with the number of slices varying between 519 to 728; 3)Micro-CT 

images of four cadaveric distal tibia specimens at 28.8 µm isotropic resolution and 3-D 

image grid size of             ; 4) Five abdominal CT with voxel size of      

             and in-plane matrix grid size of          with the number of slices 

varying between 64 to 319. From each 3-D medical image, fifty VOIs, each of size 

         voxels, will be randomly selected inside a lung/bone/abdomen region 

giving a total of 250 VOIs. For the phantom image, a total of 200 VOIs of the same will 

be randomly selected over regions containing geometric structures.  
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(a) (b) (c) 

(d) (e) 

(f) (g) (h) (i) (j) 

(k) (l) (m) 

(n) (o) 

Figure 28 Results of image interpolation on a phantom data. (a) An original image slice. 

(b) Sub-sampled image at the rate 4. (c-e) Result using standard n-linear (c), 

windowed Sinc (d) and tensor scale based n-linear image interpolation. (f-j) 

Same as (a-e) but for a zoomed part marked in (a). (k-o) Same as (a-e) but for 

another zoomed region. It may be observed that tensor scale helps preserving 

small structures and it produces smooth edges without causing ringing 

artifacts which is visible for result produced by the windowed Sinc method. 
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Figure 28 show the results of applications of the three interpolation methods on 

the 3-D phantom image after 4×4×4 down sampling. Improvement in interpolations 

results using tensor scale based interpolation in terms of structure smoothness is visually 

apparent.  

(a) (b) (c)

(d)  (e)  

Figure 29 Results of image interpolation on the BrainWeb MR phantom image. (a) An 

original image slice. (b)An image slice from sub-sampled image at the rate of 

3. (c-e) Results using standard n-linear (c), windowed Sinc (d) and tensor 

scale based n-linear (e) interpolation methods. It may be observed that tensor 

scale has produced crisper edges as compared to the standard n-linear 

interpolation without causing ringing artifact associated with the windowed 

Sinc method. 

The results of application of the three interpolation methods on the BrainWeb MR 

phantom data after 4×4×4 down sampling is shown in Figure 29. It appears in the results 

the tensor scale based method reduces the blur along object boundaries and also the 
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ringing effects of windowed sync algorithm is absent in the tensor scale based 

interpolation results (Figure 29(e)). It may be mentioned that, for all interpolation 

experiments, tensor scale was computed from the sub-sampled images. 

For quantitative analyses, starting from an original image  , a sub-sampled images 

   was obtained with different sub-sample rates of   = 2, 3 or 4. Let           be the 

interpolated image at the original resolution obtained by applying a given method on the 

subsampled image   . The performance of the underlying interpolation method is then 

measured by computing the average normalized absolute difference between the 

interpolation and the original image for every VOI in a given image. For the  th VOI    it 

is computed as: 

                
∑ |         ( )           ( ) |   

∑          ( )   
  

Finally, the interpolation error over the entire image at a given resample rate  , 

denoted by            , is computed as:  

              
 

 
∑               

 

   

 

where   is the number of the image VOIs. 

The three methods were compared under 2×2×2, 3×3×3, and 4×4×4 down 

sampling rates and the results are presented in Figure 30, Figure 31 and Figure 32. The 

tensor scale based interpolation method has improved the interpolation results for 

datasets at every down sampling rates and the enhancements are statistically significant 

except for a few cases as indicated in the figures. As compared to windowed Sinc 

algorithm, the tensor scale based method has improved the interpolation results except for 

the ankle dataset at 2×2×2 down sampling. However, for the lung and abdomen datasets, 

the windowed Sinc interpolation method has performed even worse than basic n-linear 

method. 
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Figure 30 Performance of three interpolation methods on the different phantom and 

medical images selected from various clinical applications at sub-sampling 

rate of      . The percentage error was computed over the entire 3-D 

image while a paired t-test was performed based on the percentage error from 

individual slices. As compared with the standard n-linear and windowed Sinc 

methods, the tensor scale based n-linear method has outperformed the first 

method while comparative performance with the windowed Sinc method 

varies for different images. An “NS” (non-significant) mark is used to indicate 

statistical insignificance of difference in results by two methods. 

 

Figure 31 Same as Figure 30 but for subsample rate of      .  
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Figure 32 Same as Figure 30 but for subsample rate of      .  

It general, it may be observed that, as sample rate gets lower, tensor scale extends 

its improvement in results as compared to basic n-linear interpolation while the results 

using the windowed Sinc methods get worse. This observation may be explained by the 

fact that, the use of structure information in the tensor scale method leads to a local 

context adaptive metric space partially healing for the subsampling loss. On the other 

hand, for windowed Sinc method, inclusion of a larger neighborhood may not add further 

meaningful information and may even worsen the results due to influence by locally 

disconnected structures falling inside the extended neighborhood leading to increase of 

ringing artifacts. 

5.4 Conclusion 

In this chapter, we investigated an application of tensor scale to n-linear image 

interpolation. Tensor scale brings the notion of an anisotropic space where distance 

increases slower along the direction of the local structure while it decreases slowly across 

it. The performance of tensor scale based n-linear interpolation method has been 
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compared with n-linear and windowed Sinc algorithms and both qualitative and 

quantitative results have demonstrated improvements using tensor scale. 
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CHAPTER 6  

TENSOR SCALE BASED ANISOTROPIC REGION GROWING 

6.1 Introduction 

In this chapter, we present a new anisotropic region growing segmentation 

approach for vascular or other elongated structures. A fundamental challenge during 

tracing vascular structures is broken continuity of structures by noise and other imaging 

artifacts coupled with leaking through blurring and soft boundaries. Anisotropic region 

growing solves this problem using tensor scale that captures local structure orientation 

and geometry using an ellipsoidal model. A new fuzzy connectedness based algorithm is 

developed that uses tensor scale to facilitate region growing along the local structure 

while arresting cross-structure leaking. The performance of the method has been 

quantitatively evaluated on non-contrast human pulmonary CT imaging and the results 

found are promising. 

In the following, detailed algorithm for fuzzy connectedness will be presented 

first. Subsequently, we introduce the theory and algorithm of a new anisotropic region 

growing algorithm that combine tensor scale with fuzzy connectedness method to 

facilitate along-structure growing while constraining cross-structure leaking, as well as 

techniques for automatic seed generation and vessel enhancement. Finally, experimental 

plans and methods are described, and results with concluding remarks are given. 

6.2 Tensor Scale Based Anisotropic Region Growing 

Over decades, segmentation has remained a salient task in most medical imaging 

applications confronting multi-faced challenges including limited image quality. Several 

segmentation approaches, including manual outlining, boundary based [88], region-based 

[90], and shape and model-based [91] techniques have been introduced and subsequently 

modified and investigated in different applications. In this application, we develop a new 

anisotropic region growing algorithm to segment elongated structures. Analysis of 



www.manaraa.com

84 
 

 

8
4
 

vascular geometry is important in many medical imaging research including pulmonary, 

cardiac and carotid applications. The most significant challenges for this purpose are 1) 

high inter-subject variations of vascular shape even for a specific body region, 2) 

difficulty in generating a general vascular shape model and 3) high complexity of 

vascular geometry and topology, especially in the presence of fusions among artery, vein, 

and airway for pulmonary images. Shape or model based method is not well applicable 

due to the first two challenges and boundary based approach for pulmonary vessel 

segmentation is discouraged by the third challenge. Therefore, we have adopted region 

growing method that starts with a set of seeds specified inside a target object and 

continues growing the object region under a predefined set of rules. Among other region 

growing approaches [15, 16], fuzzy connectedness [18-20, 98] has become quite popular 

method where the region growing process is governed by a predefined fuzzy affinity 

relation.  

6.2.1 Fuzzy connectedness Based Region Growing 

As illustrated in Figure 33, fuzzy connectedness defines the strength of 

connectivity between any two points     in an image using a symmetric and reflexive 2-

ary fuzzy relation referred to as “affinity”. Affinity between any two points    , denoted 

as   (   ) , indicates the “hanging-togetherness” between the two points in a target 

object. More precisely,   (   ) is the strength of the link 〈   〉 and its value lie in the 

interval [   ] . Under a given fuzzy affinity relation  , the strength of a path   

 〈              〉, denoted as   ( ) is defined as the strength of the weakest link 

on the path, i.e.,  

  ( )     
       

  (       )  

There are infinitely many paths between two points     and let  (   ) denote 

the set of all paths from   to  . The fuzzy connectedness between    , denoted as 

  (   ), is defined as the strength of the strongest among all paths in  (   ), i.e. 
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  (   )     
   (   )

  ( )  

 

Figure 33 Illustration of fuzzy connectedness computation between two points   and   . 

For affinity, points belongs to the same structure have greater value than 

points of different structures, which means   (   )    (     ). There are 

two paths, solid and dashed shown in the figure, based on the definition of the 

path strength,   (      )    (       ) . Finally, the fuzzy connectedness 

between   and    is defined as the strength of the strongest path. 

Finally, for given set   of seed points, the fuzzy object is defined as a fuzzy set   

where the membership values at any point   indicates the maximum strength of fuzzy 

connectedness to any seed point in  , i.e.,  

  ( )     
   

  (   )  

It has been shown in [98], that fuzzy connectedness is a similitude fuzzy relation 

and an efficient computational solution was presented in [20].  
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Effectiveness of fuzzy connectedness is highly dependent on the choice of the 

affinity relation. A major challenge with application of fuzzy connectedness in 

pulmonary vessel segmentation emerges from the fact that vessels, the target object in the 

current application, form a tree-like structure of tubular paths and at fine scales, the 

diameter of these paths may be comparable to voxel resolution. Therefore, these tubular 

paths, especially at finer scales, are vulnerable and getting broken by noise and other 

imaging artifacts and the continuity of vascular structure may get lost using a region 

growing rules suitable for other regions. On the other hand, softening the rules to capture 

the broken continuity may cause to leaking at other regions. However, a human expert 

may capture the broken continuity implicitly using the contextual local structures.  

6.2.2 Tensor Scale Based Anisotropic Fuzzy Region Growing  

With tensor scale, we develop a constrained region growing algorithm where the 

growing rules adapt to local structure geometry facilitating growth along a structure while 

constraining it across local structures.  

 

Figure 34 A schematic representation of a vascular tree structure in 2-D. Tensor scale at 

a point   is indicated by the ellipse in red. The proposed constrained region 

growing algorithm uses this knowledge to facilitate growth along the structure 

while restricting growth across the local structure to stop leaking. 
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For example, consider the example of Figure 34; using the tensor scale at the 

point  , we know the orientation and geometry of local structures at  . The proposed 

constrained region growing algorithm uses this knowledge to facilitate growth along the 

structure while restricting growth across the local structure to stop leaking. In the 

following paragraph, we formally describe the theory and algorithms. 

As described above, the effectiveness of fuzzy connectedness largely depend on 

the choice of the affinity function   . A detailed discussion of formulation of affinity 

function may be found in [10]. However, there is not mention on how to use structure 

anisotropy and orientation informally to locally adopt the affinity in a direction-

dependent fashion. Here, we formulate a local tensor scale defined affinity function to 

simulate a constrained region growing that facilitates the growth of an object along local 

structure direction while constraining it across local structure. Following the suggestion 

of [10], we use the basic underlying formulation of the affinity function: 

  (   )  {

         

  (   )√  (   )  (   )           
 

where          {   }  is the adjacency function while   (   )  captures 

homogeneity between   and   and   (   ) gives the hanging-togetherness of     in the 

target object based on likeliness of their feature values with respect to the expected 

feature distribution of the target object. It was also argued in [10] that the function    

should be chosen to reflect the measure of the fuzzy proposition “  is small” [124] while 

the other function    should be chosen to reflect the measure of the fuzzy proposition “  

is close to an expected value” [124]. In our research work we have used the following 

functional forms for    and    satisfying these properties: 

  (   )   
 

| ( )  ( )| 

   
 

               (   )     ( 
 

| ( )  | 

   
 

  
 

| ( )  | 

   
 

) 
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where    and    are two different standard deviation parameters used for homogeneity 

and object feature distribution and   is the mean object feature value. Although, this 

formulation immediately extends to vector-valued images, here, we consider only scalar-

valued images depending on our application. The key idea of our constrained region 

growing is to locally adapt the two parameters    and    in a direction dependent 

manner using local tensor scale to enhance growth compliance with local structures. 

The control parameters    and    determine the growth process for an object. 

When these parameters are large, the object grows more vigorously and possibilities of 

leaking through object boundaries increase. On the other hand, when small values are 

used for these parameters, the growth process works conservatively and the chance of 

breaking object continuity due to noise and other imaging artifacts increases. In the 

conventional region growing methods [15, 16], these parameters was kept fixed and fine 

control on and adaptivity to local structural properties were lacking. These regional 

control and adaptivity are provided by local scale. The motivation of using tensor scale in 

region growing is to introduce the local control and adaptivity in an orientation-

dependent fashion as illustrated in Figure 34.  

Specifically, the two controlling parameter    and    are determined by local 

tensor scale in a space- and orientation-variant manner as follows: 

  (   )                 (   (  ( )   ( )))             

where   {   },   ( ) is the radius of the tensor scale ellipsoid at   along   .   is a 

monotonically non-decreasing function, e.g., 

 ( )  {

            

   

      
          

    

The value of      is determined as the rough estimate of the maximum scale of 

the target object. The two parameters               and             are the stationary and 

adaptive components in the control parameter; here, we have used one third of the total 
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control parameter remain stationary while the two-third fraction is varied by local tensor 

scale; thus, the ratio of               and             1:2. Finally, the total value of the 

control parameter, i.e.,                          is determined following the description 

in [9] 

6.2.3 Vessel Enhancement and Automatic Seeding  

For the specific task of pulmonary vessel tree segmentation, a common challenge 

for region growing techniques is leaking to adjacent anatomical structures including lung 

parenchyma, fissure, and airway wall. To reduce the influence of these structures, a 

multi-scale convolutional vessel enhancement algorithm based on eigenvalues of Hessian 

matrix [125, 126] is first employed to highlight the vessel structures that can be modeled 

as cylindrical shape. A common procedure for the method is that, firstly, the candidate 

image is convolved with 3-D Gaussian filters at multiple scales, yielding response for 

vessels of different radiuses; then the eigenvalues of the Hessian matrix computed at each 

voxel are analyzed. The eigenvalues are related to structure geometry and are therefore 

used to indicate the shape of underlying object. 

For 3-D lung CT images under investigation here, all three eigenvalues with 

similar positive values infer isotropic structures such as parenchyma while for tubular 

vessel structures, the eigenvalues hold a different pattern. For a multi-scale analysis, 

given that the method will yield maximum response at a scale that approximately 

matches the size of vessels, the final vesselness measurement is chosen as the maximum 

value under different scales and with this procedure, the radius is approximated with the 

scale parameter used for achieving the maximum. An example is given in Figure 35 

where we reduced undesired structures such as fissure (as shown within rectangles) and 

airway wall (as shown within circle) by enhancing the tubular vessel structures. 
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(a) (b) 

Figure 35 An example of vessel enhancement result in (b) for a pulmonary image (a). It 
can be observed that we reduce undesired structures such as fissure (as shown 
within rectangles) and airway wall (as shown within circle) by enhancing the 
tubular vessel structures. 

One important input for fuzzy connectedness based image segmentation method is 

a set of seed points. Therefore for designing an automatic segmentation algorithm, we 

need to identify reliable seed positions within the lung vessels. Here, we have combined 

intensity information, radius estimation and tensor scale based centerline approximation 

to identify seed points within a CT image. Firstly, a conservative threshold of intensity in 

Hounsfield Unit is decided to create an initial decision on seed points with a high 

specificity. Then, seed points closer to centerlines of vessels are selected. This task is 

accomplished based on analysis of the primary t-vector with observation that the 

magnitude of primary vector yields local maxima at centerline points. Finally, seed points 

are further selected based on the radius estimate given by multi-scale filtering. An 

example of seed point selection is provided in Figure 36. As shown in the figure, seed 

points are selected approximately along the centerline of vessel structures. Finally, with 

the set of seed points selected within the whole lung image, the segmentation method 

described in Chapter 6.2.2 is performed. 
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Figure 36 Seed points selected on part of an illustration slice. Seed points (red) locate 
approximately on the centerline of lung vessels. 

6.3 Experimental Methods and Results 

Tensor scale based anisotropic region growing method was applied on 2-D image 

and several 3-D medical images and was compared with both conventional fuzzy region 

growing algorithm without tensor scale and vesselness based method. For qualitative 

observation, we first present the results on a 2-D photographic image of a coral reef 

containing a complex tree-like network of locally elongated fuzzy branch structures. 

Then, we evaluate our method on four pulmonary CT images. To quantitatively evaluate 

the performance of our algorithm, we used manually selected points inside and out 

vascular regions those were used as ground truth for accuracy and error evaluation. 

Specifically, 1000 points were manually selected by an expert inside the vascular region 

on randomly picked slices; another set of 1000 points were selected outside the vascular 

region. Visually confirmed vessels over the entire range of scales were used to select 
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these points; finally, the points outside the vessels were selected in common leakage 

regions such as lung parenchyma, fissure, and airway wall as well we near-vessel regions 

with no further than 3 voxels from the vessel as determined visually. Let   denote the set 

of points manually selected on vascular region and let   denotes the set of points 

manually selected outside the vascular region. Let         and         denote the set of 

points on vascular region on its complement derived by applying a given method. The 

following measures are defined to examine the performance of a given method. 

                    
|         |

| |
 

                    
|         |

| |
 

                     
|         |

| |
 

                    
|         |

| |
 

               
|         |  |         |

| |  | |
 

            
|         |  |         |

| |  | |
 

Results of several qualitative and quantitative evaluative experiments are 

presented. Figure 37 presents the results of application of the new method and its 

comparison with the conventional fuzzy connectedness region growing [20] on a 2-D 

photographic image of a coral reef containing a complex tree-like network of locally 

elongated fuzzy branch structures. As shown Figure 37 (a), one seed (red dot) was 

manually selected on the main trunk of the coral reef tree and the results of application 

using the conventional and the anisotropic region growing methods are shown in Figure 

37 (b,c), respectively.  
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Figure 37 2-D Segmentation results on an image of coral reef (a); the red dot indicates 

the seed. The new anisotropic region growing has captured more branches (c) 

as compared to the conventional algorithm (b). (d-f) Zoomed-in display of (a-

c) over the regions marked by the red box in (a). 

As observed in Figure 37 (b,c), the new method (Figure 37 (c)) captures more 

branch structures, especially at low-contrast regions where the vessel got broken by 

imaging artifacts and noise and it is more prominent in the zoomed in displays of Figure 

37(d-f). 

Figure 38 shows a comparison result for a pulmonary CT image between fuzzy 

connectedness segmentation method without and with tensor scale information. As 

shown in the image, tensor scale successfully helped the algorithm to capture more vessel 

structures that were missed without tensor scale.  
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 (a) 

 (b) 

Figure 38 One slice in 3-D Segmentation for pulmonary CT image; as shown within the 
circle, one branch missed by fuzzy connectedness segmentation method 
without tensor scale (a) is captured by incorporating tensor scale information 
(b).  

Four non-contrast pulmonary human CT images acquired with voxel size of 

                  and in-plane matrix of         was used to quantitatively 

evaluate the new method’s performance in comparison with Shikata’s method [127]. 

Seed points are automatically generated in the vessel region for applying the new 

anisotropic diffusion algorithm for vascular segmentation. Initial results of anisotropic 

region growing are shown in Figure 39(b). The new method has successfully captured 

structures at a wide range of scales including those at high and small scales. Pulmonary 

vessel was separated from cardiac and other tissue regions by putting a separator on 
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pulmonary trunk and separating the pulmonary vasculature from the rest of the tissue 

using the multi-scale opening algorithm [128]. Results of pulmonary vasculature by 

region growing without and with tensor scale are shown in Figure 39 (d) and (e). Results 

of vascular segmentation using Shikata’s method are shown in Figure 39 (a) and (c). 

(a) (b)

(c) (d) (e) 

Figure 39 Results of vascular segmentation in non-contrast human pulmonary CT 

imaging. (a) A 2-D CT image slice with overlapped vessel segmentation result 

using Shikata’s method. (b) Matching slice with overlapped vessel 

segmentation result using tensor scale (c-e) 3-D renditions of vasculature 

using Shikata’s (c), conventional region growing (d) and the tensor scale (e) 

methods. 

Although, the method by Shikata was able to capture medium scale vessels, its 

performance was somewhat compromised at fine and large scale.  
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3-D rendition of vasculature using our method and Shikata's method are presented 

in Figure 39 (c-e), respectively, confirming our observations in 2-D. Vessel segmentation 

results using anisotropic region growing algorithm capture more details at large and small 

scales and also maintain better vascular topology around the pulmonary entry region as 

compared to Shikata’s method due to the compromised behavior of the later method at 

large scales. 

Table 6 Results of accuracy analyses of vessel segmentation by the two methods. 

 Data set 1 Data set 2 

 Shikata 
Fuzzy w/o 

tensor 
scale 

Fuzzy w/ 
tensor 
scale 

Shikata 
Fuzzy w/o 

tensor 
scale 

Fuzzy w/ 
tensor 
scale 

True Positive 0.840 0.874 0.979 0.619 0.851 0.973 

True 
Negative 

0.999 0.994 0.973 0.994 0.988 0.964 

False 
Positive 

0.001 0.006 0.027 0.006 0.012 0.036 

False 
Negative 

0.160 0.126 0.021 0.381 0.149 0.027 

Accuracy 0.915 0.931 0.976 0.789 0.913 0.969 

Error 0.085 0.069 0.024 0.211 0.087 0.031 

 Data set 3 Data set 4 

 Shikata 
Fuzzy w/o 

tensor 
scale 

Fuzzy w/ 
tensor 
scale 

Shikata 
Fuzzy w/o 

tensor 
scale 

Fuzzy w/ 
tensor 

scale 

True Positive 0.809 0.870 0.975 0.735 0.859 0.963 

True 
Negative 

0.998 0.990 0.968 0.992 0.987 0.959 

False 
Positive 

0.002 0.010 0.032 0.008 0.013 0.041 

False 
Negative 

0.191 0.130 0.025 0.265 0.141 0.037 

Accuracy 0.904 0.930 0.972 0.864 0.923 0.961 

Error 0.096 0.070 0.028 0.136 0.077 0.039 
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Performance measures for the two methods as well as the performance of fuzzy 

region growing without tensor scale information on four different datasets are presented 

in Table 6. The accuracy is quite high for all data sets. The True Positive and True 

Negative here are defined as the accuracy for detection of vascular region and 

background, which turn to be values close to 1. The False Positive is the percent of 

voxels outside vascular region are falsely detected vessel, which is a small value for both 

data sets. The False Negative is the percent of voxels inside vascular region are falsely 

detected as non-vessel, which is a small value for both data sets. The new method has 

produced high accuracy for all datasets while the method without tensor scale and 

Shikata’s method produced significantly lower accuracy for the second dataset which was 

caused by missing an entire vascular branch due to its compromised performance at large 

scales. It may be pointed out that, following our definition, the sum of accuracy and error 

measures is always ‘1’ here. 

6.4 Conclusion 

In this chapter, we investigated an application of tensor scale to fuzzy 

connectedness based anisotropic region growing algorithm. The method combines tensor 

scale with fuzzy connectedness facilitating region growth along local structures while 

arresting cross-structure leaking. By incorporating tensor scale information, the algorithm 

locally adapts and governs the fuzzy segmentation process so that it can capture vascular 

structures more robustly in the presence of noise and other imaging artifacts. Application 

of the method to pulmonary images with multi-scale vessel enhancement and automatic 

seed generation demonstrates promising quantitative results. 
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CHAPTER 7  

CONCLUSION AND FUTURE DIRECTIONS 

7.1 Conclusion 

Tensor scale is a local morphometric parameter using an ellipsoidal model that 

yields a unified representation of local structure size, orientation, and anisotropy. It 

captures local structural information and is widely applicable to multiple image 

processing and analysis tasks. The computation and application of tensor scale is 

challenging for 3-D images and the overall aim of the Ph.D. research project was to 

establish an analytic definition of tensor scale in n-D images, develop an efficient 

computational solution and investigate its role in various medical imaging applications 

including image interpolation, filtering and segmentation. The overall objective was 

structured in six specific aims as follows: 

Aim 1: Establish an analytic approach to define tensor scale in n-D images with objects 

formed by pseudo-Riemannian partitioning manifolds. 

Aim 2: Develop an efficient computational algorithm for 2- and 3-D images combining 

Euclidean distance transform and several novel differential geometric approaches. 

Perform experiments to evaluate the accuracy of the computational algorithm. 

Aim 3: Design and develop an inter-slice interpolation algorithm based on tensor scale. 

Perform experiments to evaluate the performance of the method in comparison 

with to existing interpolation algorithms. 

Aim 4: Design and develop an anisotropic diffusion filtering algorithm based on tensor 

scale. Perform experiments to evaluate the performance of tensor scale guided 

anisotropic diffusion filtering method in comparison with conventional gradient 

and structure tensor based diffusion filtering algorithms. 

Aim 5: Design and develop a tensor scale based n-linear interpolation method. Perform 

experiments to evaluate the performance of tensor scale based interpolation 
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method in comparison with standard linear interpolation and windowed Sinc 

interpolation methods. 

Aim 6: Design and develop a new anisotropic constrained region growing method locally 

controlled by tensor scale for vessel segmentation. Perform experiments to 

evaluate the accuracy of tensor scale guided region growing method for 

vasculature segmentation. 

In Chapter 2, we presented an analytic formulation for tensor scale for n-D images 

together with an efficient computational solution in 2- and 3-D (Aim 1 and 2). The 

computational solution is based on several techniques including gray scale distance 

transform and computation of local principal curvature directions on the closest 

partitioning manifold represented by discrete edge points. Experimental results for both 

2- and 3-D images were presented. Robustness and accuracy of the computation 

framework is examined in comparison with theoretical results derived under the ideal 

condition of object partitions with no noise and blur have demonstrated that the proposed 

efficient computation method yields acceptable results at moderate noise and blur with 

image structures being visually apparent. 

In Chapter 3, we investigated the application of tensor scale to medical image 

slice interpolation (Aim 3). A closed form solution for computing interpolation lines 

using tensor scale has been introduced which has contributed to a new tensor scale based 

interpolation algorithm. Experimental results have demonstrated that the new 

interpolation method outperforms state-of-the-art registration based interpolation 

techniques on real clinical images and the statistical significance of the improvements 

was observed. 

In Chapter 4, we applied tensor scale to anisotropic diffusion image filtering (Aim 

4). Tensor scale generates an optimal scale parameter that fits with local image structures 

and we utilized this parameter to design a new conductance function governing the 

diffusion process in a space-variant and orientation dependent fashion. The performance 
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of tensor scale based filtering has been compared with that of gradient and structure 

tensor based diffusion filtering algorithms and both qualitative and quantitative results 

have demonstrated improvements in image filtering using tensor scale. 

In Chapter 5, tensor scale based n-linear image interpolation algorithm is designed. 

Tensor scale brings the notion of an anisotropic space where distance increases slower 

along the direction of the local structure while it decreases slowly across it. Therefore, 

cross region mixing is avoided by incorporating tensor scale information to the method. 

The performance of tensor scale based n-linear interpolation method has been compared 

with conventional n-linear and windowed Sinc algorithms and both qualitative and 

quantitative results have demonstrated improvements using tensor scale. 

In Chapter 6, we designed and developed a tensor scale based anisotropic fuzzy 

region growing algorithm. The method combines tensor scale with fuzzy connectedness 

facilitating region growth along local structures while arresting cross-structure leaking. 

By incorporating tensor scale information, the algorithm locally adapts and governs the 

fuzzy segmentation process so that it can capture vascular structures more robustly in the 

presence of noise and other imaging artifacts. Application of the method to pulmonary 

images with multi-scale vessel enhancement and automatic seed generation demonstrates 

promising quantitative results comparing with vesselness based method and fuzzy 

method without tensor scale. 

7.2 Future Directions 

The general tensor scale frameworks presented in this thesis have a number of 

potential applications and extensions that have been preliminarily investigated. Here, we 

discuss three interesting future directions in related areas. 

7.2.1 Tensor Scale Based Features in Computer Vision Applications 

In this thesis, we have shown mostly the use of tensor scale in locally control for 

various medical image processing tasks. Since tensor scale extracts rich structural 
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information for every point in an image, a natural idea is to derive features from tensor 

scale and apply them to computer vision and pattern recognition applications.   

Feature extraction is an important step for computer vision and pattern 

recognition tasks. It generate a feature vector that is of lower dimension than original data 

while preserving useful information contained in the data for a specific job. Basic 

features are often computed on intensity and local operations such as gradient given by 

Gaussian convolution at different scales, histogram of local neighborhood, and detection 

of contour and corner points. Tensor scale provides structure information not only at 

salient points but also within homogenous regions and can therefore potentially serve in 

feature extraction. 

A preliminary experiment has been performed on retinal image mosaicking where 

a mosaic image is generated by combining several fundus images with different field of 

view to the object in order to facilitate the diagnosis process. Mosaic synthesis generally 

contains multiple pairwise registration as shown in Figure 40 which combines two 

partially overlapped images to form a new image with larger field of view. Such process 

faces many problems such as different illumination during imaging, limited overlap 

region, radial distortion due to sphere nature of human eye, and limited vessel width.  

(a)  (b) 

Figure 40 Two retinal fundus images with different field of view to a single object 
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Tensor scale is capable of extracting structure features that are consistent under 

image rotation, varying pixel size, and background inhomogeneity. Also, it is 

independent of local intensity change due to illumination or other artifacts. Therefore, it 

is useful in this application.  

Several features including distance to edges, local structure size, anisotropy and 

orientation and convexity of distance map as illustrated in Figure 41. 

 

Figure 41 Features extracted from tensor scale from vessel map (a) of the original image 
(h): distance to edges (b), local structure size (c), local structure orientation 
(d), local anisotropy (e), center/edge point label (f) and convexity of distance 
map (g) 

Based on these features, correspondences between points within two images are 

identified and a transformation is estimated for final mosaic result is shown in Figure 42. 

The performance of the preliminary experiment is limited by the simple transformation 

model and basic correspondence detection algorithm, while the potential of structural 

features derived from tensor scale is illustrated. In the future, it can be incorporated with 

more sophisticated methods such as salient point detection, advanced matching 

techniques and complex transformation models. 
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(a) (b) 

(c) 

Figure 42 Correspondence between two images, a set of points are selected in (a) and 
their correspondent point is identified in (b). Correspondent points are then 
clustered for estimation of transformation between images and final result is 
shown in (c). 

7.2.2 Tensor Scale Based Shape Analysis Algorithms 

Tensor scale extracts useful information regarding shape of structures in the 

images. For medical image analysis tasks, orientation, scale and anisotropy features are 

often of significant value in estimating pose, size as well as approximate shape of the 

anatomical structures for more accurate recognition, segmentation and evaluation 

purposes.  

For example, anisotropy and scale information provided by tensor scale can be 

used for assessment of plate and rod structures for CT trabecular bone images. A 

preliminary result is provided in Figure 43 where we evaluate the different structures 
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within the bone based on the scale and anisotropy information extracted by tensor scale. 

This work is currently under investigation in our lab. 

(a) (b)  

Figure 43 Tensor scale based shape analysis, a trabecular bone structure with rods and 
plates is shown in (a) and the structure evaluation result is provided in (b). 

7.2.3 Tensor Scale Based Similarity Measurements for Image Registration 

Image registration has played an important role in medical applications such as 

atlas based image segmentation, motion modeling, and multi-modality fusion. The 

fundamental assumption in these applications is that a correspondence mapping between 

anatomical structures can be identified by image registration. Specifically, for deformable 

registration method, the primary objective is to compute a deformation vector field that 

warps a target image onto a reference image. In other words, for each point in the target 

image, we need to determine its correspondence in the reference image. 

Tensor scale is shown to be invariant with regard to rotation and scaling, and it is 

independent of background inhomogeneity with robust performance under different 

levels of noise. Also, it captures structural information that does not rely on specific 
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intensity value for certain anatomical structures. Therefore, it has the potential to be 

applied in designing similarity measurement for image registration. 

A preliminary result is provided in Figure 44, where a geometric Y-like shape is 

registered onto a disk via an intermediate shape. 

 
(a)                             (b)                             (c)                             (d) 

 
(e)                             (f)                             (g)                             (h) 

Figure 44 Illustrations of different shapes during deformation of a Y-like target shape (a) 
onto a disk (h) via an intermediate shape (e) using the tensor scale based 
method. Intermediate shapes during warping from (a) to (e) are shown in (b-d) 
while (f-g) illustrate intermediate shapes between (e) and (h). 

The above result has illustrated the potential of tensor scale in image registration, 

while for further development there are two major challenges to be addressed. Firstly, we 

need to appropriately design the similarity measurement based on tensor scale 

information, since current tensor matrix based similarity is not efficient and accurate for 

registration purpose; and secondly, it is critical to find the solution for accurate estimation 

of the change in tensor scale due to the deformation during registration process so that 

optimization techniques can be applied to the proposed similarity measurement. 
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